双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是(A)4\x05(B)6 (C)8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 01:43:01
双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是(A)4\x05(B)6 (C)8
xRNP% }$i:ݐQ" &Q,`1B\#(@/x+\{=󞜉rѮ8$@A,x1%vIMR:Mbh LE4\C zA eZf PM ۆ)u-Q |d?v6;].Ƈ}>SFNY_9^ږLT!%!F-$o>2@h>*`$ehߵ=ä]bjAQr@1zjhk1+"4qR_K0eq=5Ncyz>t)w\6k\%&P9;>ʰa i EC~w%qm4uzL 4 p8d w=J]bʺ JjIG-E"&xYKyD=ؖ,f3ˬH5kuG

双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是(A)4\x05(B)6 (C)8
双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是
双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是
(A)4\x05(B)6 (C)8 (D)10

双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是双曲线x^2-(y^2)/3=1的左右焦点为F1,F2过点F2的直线l与右支交于点P,Q,若|PF1|=|PQ| 则|PF2|的值是(A)4\x05(B)6 (C)8
a=1,b=√3,c=√(1+3)=2,
根据双曲线定义,
|PF1|-|PF2|=2a=2,
|PQ|=|PF1|,
∴|PQ|-|PF2|=|F2Q|=2,
|F1F2|=2c=4,
同样根据双曲线定义,|F1Q|-|F2Q|=2a=2,
∴|F1Q|=2+2=4,
在△F1F2Q中根据余弦定理,
cos作PH⊥F1Q,垂足H,
∵△PF1Q是等腰△,
∴PH平分|F1Q|,
∴|HQ|=2,
∴cos|PQ|=2/(1/4)=8,
∴|PF2|=|PQ|-|F2Q|=8-2=6,
∴应选B.

b

双曲线X^2-Y^2/4=1的左右两个焦点F1F2 第二象限内的一点P在双曲线上,求P点坐标如图,双曲线X^2-Y^2/4=1的左右两个焦点F 1 F2 第二象限内的一点P在双曲线上,且∠F1PF2=π/3,求P点坐标 F1,F2是双曲线x^2-y^2/3=1的左右焦点,M(6,6)双曲线内部的一点,P为双曲线右支上的一点.求:〡PF1〡+〡PF2〡的最小值 双曲线的左右焦点f1f2,x^2-y^2/9=1,点P在双曲线上,向量pf1*pf2=0,求向量PF1+PF2的绝对值 求双曲线方程,双曲线为 y^2/a^2-x^2/b^2=1的左右焦点为F1,F2, 双曲线x^2/4-y^2/b^2=1的左右焦点为F1F2,点P在双曲线上,使|Pf1|,F1f2|,|pf2|成等差数列,且|pf2| 双曲线C:x^2/a^2-y^2/b^2=1上一点(2,2次根号3)到左右两焦点距离的差为21.求双曲线的方程2.设F1,F2是双曲线的左右焦点,P是双曲线上的点,若|PF1|+|PF2|=6,求cos P是双曲线x^2/a^2-y^2/9=1上 的一点,双曲线的一条渐近线方程为 3x-2P是双曲线x^2/a^2-y^2/9=1上的一点,双曲线的一条渐近线方程为3x-2y=0,F1、F2分别为双曲线的左右焦点若|PF1|=5,则|PF2|=()?A.1或5B.1或9C.7 D 若双曲线x^2/a^2-y^2/b^2=1的左右焦点到x=a^2/c的距离之比为3/2则双曲线的离心率是 设F1、F2分别为双曲线x^2/a^2-y^2/b^2=1的左右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为A.3x±4y=0B.3x±5y=0C.4x±3y=0D.5x±4y=0勾股怎 已知双曲线3x方-y方=12的中心为O,左右焦点分别为F1.F2,左右顶点分别为A1.A2(1)求双曲线的实轴长.虚轴长 离心率和渐近线方程;(2)设过A1平行于Y轴的直线交双曲线的两条渐近线分别于C1 D1,求四 设 分别为双曲线 的左右焦点,为双曲线的左顶点,以 为直径的圆交双曲线某条渐近线于 两点,且满足 ,则设F1、F2 分别为双曲线X^2/a^2 - Y^2/b^2 = 1(a>0,b>0) 的左右焦点,A 为双曲线的左顶点,以 F1、F2 已知F1,F2分别是双曲线3x^2-5y^2=75的左右焦点,P是双曲线上的一点,且叫F1PF2=120度.已知F1,F2分别是双曲线3x^2-5y^2=75的左右焦点,P是双曲线上的一点,且叫F1PF2=120度,求三角形F1PF2的面积. 已知双曲线x^2-3y^2=3上一点p到左右焦点的距离之比为1:2求p点到右准线的距离 双曲线的题.设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点,若点P在双曲线上,且PF1向量*PF2向量=0,则|PF1向量+PF2向量|=?答案是2根号10.可是我算不出. 已知双曲线x^2/a^2-y^2/b^2=1的左右焦点分别是F1,F2 点p在双曲线的右支上且|PF1|=4|PF2| 则此双曲线的离心率的最大值为? 在双曲线x^2/a^2-y^2/b^2=1上有一点P,F1F2分别为该双曲线的左右焦点,角F1PF2=90°,三角形F1PF2的三条边成等差数列,则双曲线的离心率 双曲线x^2/a^2-y^2/b^2=1的左右焦点分别为F1F2,点P在双曲线的右支上,且PF1=7PF2,求双曲线的离心率最大值 双曲线x^2/a^2-y^2/b^2=1的左右焦点分别为F1,F2,点P在双曲线的右支上,且PF1=4PF2,求双曲线离心率最大值