已知F1 F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果角PF2Q=90°,求离心率 解析如下 过焦点F1且垂直于实轴的弦与双曲线的交点A、B 另一焦点F2 ∠AF2B=90° A、B关于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:47:55
已知F1 F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果角PF2Q=90°,求离心率 解析如下 过焦点F1且垂直于实轴的弦与双曲线的交点A、B 另一焦点F2 ∠AF2B=90° A、B关于
xRMo@+#!!]a\"V(KssBJ*uvSʮ9خۊPiy~3fr<`RyH FH":;`ޑXuE--#]hS;g,hDΐ)Ϳ'nFK]V/\ s&1D@E6O\o`?VuU+pS5NQM6/zÔ^$JIT$3g\T4PTT#ՂRBK% PR#١p}+Nz܌l6up#!_rA^gBa(q W"|0c_}_[@`aڅng?| LR%0:Y>/D1T \xO'ooT㿷YPy2W%1`^ W9~y?v

已知F1 F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果角PF2Q=90°,求离心率 解析如下 过焦点F1且垂直于实轴的弦与双曲线的交点A、B 另一焦点F2 ∠AF2B=90° A、B关于
已知F1 F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果角PF2Q=90°,求离心率 解析如下 过焦点F1且垂直于实轴的弦与双曲线的交点A、B 另一焦点F2 ∠AF2B=90° A、B关于x轴对称 ∠AF2F1=45°双曲线x²/a²-y²/b²=1 A(-c,b²/a) AF1=F1F2 2c=b²/a 2ac=c²-a² e²-1=2e e²-2e-1=0 e=1+-√2 双曲线离心率>1 e=1+√2 我要问问为什么 A的坐标就是(-c,b²/a)?

已知F1 F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦,如果角PF2Q=90°,求离心率 解析如下 过焦点F1且垂直于实轴的弦与双曲线的交点A、B 另一焦点F2 ∠AF2B=90° A、B关于
A 在双曲线上 横坐标为 Xa=-c 代入双曲线方程 求Ya即可 有c2/a2-y2/b2=1 移项的 y2/b2=c2/a2-1 通分 原式=c2-a2/a2 由于c2-a2=b2 再对y开方就求得了纵坐标

不知道 呵呵呵呵呵呵呵

已知双曲线x^2/9-y^2=1的两个焦点为F1,F2,A是双曲线上一点,且|AF1|=5则|AF2|=多少 已知双曲线的两焦点分别为F1,F2,其中F1是抛物线y^2=4*x的焦点,点A(-1,2),B(3,2)在双曲线上,求F2轨迹 已知双曲线的两焦点分别为F1,F2,其中F1是抛物线y^2=4*x的焦点,点A(-1,2),B(3,2)在双曲线上,求F2的轨迹? 一道双曲线题目已知双曲线 x^2/a^2 - y^2/b^2 =1 左右焦点分别为F1 、F2,过点F2作与x轴垂直的直线于双曲线一个交点为P,且角P F1 F2=30°,则双曲线的渐进线方程为_____要具体的过程 答案是±√2x 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,PQ是经过F1且垂直于x轴的双曲线的弦 角PF2Q=90度,求离心率 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P,且角F1PF2 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P且角F1PF2=60已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a,b>0)的两个焦点,过点F2且垂直于x轴的直线交双曲线于P,且角F1PF2 已知点F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,以线段F1F2为边作正三角形MF1F2.若边MF1的中点在双曲线上,则双曲线的离心率是多少 双曲线的性质,求双曲线的渐近线方程已知F1,F2是双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0),过F2作垂直于x轴的直线交双曲线于点P,且角F1PF2=60度,求双曲线的渐近线方程 双曲线的性质,求双曲线的渐近线方程已知F1,F2是双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0),过F2作垂直于x轴的直线交双曲线于点P,且角F1PF2=60度,求双曲线的渐近线方程 P为双曲线(x^2)/(a^2)-(y^2)/(b^2)上任意一点,F1,F2是双曲线的焦点,从F1作角F1PF2的角平分线的垂线...P为双曲线(x^2)/(a^2)-(y^2)/(b^2)上任意一点,F1,F2是双曲线的焦点,从F1作角F1PF2的角平分线的垂线,垂足 已知双曲线16x^2-9y^2=144,F1,F2是两个焦点P在双曲线上且|pF1|*|PF2|=32求角P1PF2 1.已知F1、F2是双曲线x^2/16-y^2/9=1(m>n>0)的两个焦点,PQ是过F1的弦,且PQ的倾倾斜角a那么[PF2]+[QF2]-[PQ]的值是?注[]表示绝对值,2.F1,F2是双曲线y^2/25-x^2/11=1R的两个焦点,点P在双曲线上,G是PF的中点,且角F1 已知等轴双曲线C:xy=9/2,两个焦点F1,F2在直线y=x上,线段F1,F2的中点是坐标原点.(1)求此双曲线的实轴长.(我算出来了,是6,和答案给的一样)(2)现要在等轴双曲线C上选一处P建一座码头,向A( 已知点P在双曲线x^2/a^2-y^2/b^2=1的右支上.F1,F2是双曲线的两个焦点.则三角形PF1F2的内切圆的圆心的横坐标是? 已知F1,F2是双曲线x^2/16-y^2/9=1的左右两个焦点,PQ是过点F1左支上的弦,且PQ的倾斜角为a,则|PF2|+|QF2|-|PQ|的值 设f1,和f2为双曲线x^2/a^2-y^2/b^2=1的两个焦点,若f1,f2,p(0,2b)是正三角形的三个顶点,则双曲线的离心率为 已知F1,F2是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,以线段F1F2为边作正三角已知F1、F2是双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,以线段F1F2为边作正三角形,若边MF1的中点在双曲线上,则双曲线的离心率