设F1、F2双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右两个焦点,若在双曲线的右支上存在一点P,使(向量OP+向量OF2)×向量F2P=0(O为原点)且│PF1│=根号3│PF2│,则双曲线的离心率为?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 12:35:24
设F1、F2双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右两个焦点,若在双曲线的右支上存在一点P,使(向量OP+向量OF2)×向量F2P=0(O为原点)且│PF1│=根号3│PF2│,则双曲线的离心率为?
xRKO@+(R+Czl(T@O$^UJhT!Ar)9N6PW.||й8>wџ%]o{Η1`ebAy^6z|}Z-Afl,E}/^[lʣɢUg]p\|}dCEMl|Ve LrEڽ3V6/?>~JXS^,+ތ'{)>,SkEv.c* Dp^ЯkQ@)x)9W& Ƨm* "T% [YBd3lhp y "(@0*)Gih_~ !3M.5AT87MT10}u] ٴ.

设F1、F2双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右两个焦点,若在双曲线的右支上存在一点P,使(向量OP+向量OF2)×向量F2P=0(O为原点)且│PF1│=根号3│PF2│,则双曲线的离心率为?
设F1、F2双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右两个焦点,若在双曲线的右支上存在一点P,使(向量OP
+向量OF2)×向量F2P=0(O为原点)且│PF1│=根号3│PF2│,则双曲线的离心率为?

设F1、F2双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右两个焦点,若在双曲线的右支上存在一点P,使(向量OP+向量OF2)×向量F2P=0(O为原点)且│PF1│=根号3│PF2│,则双曲线的离心率为?

设f1,和f2为双曲线x^2/a^2-y^2/b^2=1的两个焦点,若f1,f2,p(0,2b)是正三角形的三个顶点,则双曲线的离心率为 设 分别为双曲线 的左右焦点,为双曲线的左顶点,以 为直径的圆交双曲线某条渐近线于 两点,且满足 ,则设F1、F2 分别为双曲线X^2/a^2 - Y^2/b^2 = 1(a>0,b>0) 的左右焦点,A 为双曲线的左顶点,以 F1、F2 设F1和F3为双曲线的平方/a的平方-y的平方/b的平方=1的两个焦点,若F1.F2.P(0,2b)是正三角形的三个顶点,则双设F1和F2为双曲线(x平方除以a平方)-(y平方除以b平方)(a>0,b>0)的两个焦点,若F1.F2.P(0, 设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1 设O为坐标原点,F1,F2是双曲线 x^2/a^2-y^2/x^2=1(a>0,b>0)的焦点,若在双曲线上存在点P,满足∠F1 设f1f2和f2为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的两焦点,若f1、f2、p(0,2b)是正三角形的三个顶点,则双曲线离心率是? 设F1,F2分别是双曲线x^/a^-y^/b^的左.右焦点,若双曲线存在点A,使∠F1AF2=90°且|AF1|=3|AF2|.则双曲线的离心率为?根号10/2 设F1,F2是双曲线x^2/4a-y^2/a=1(a>0)的两个焦点,P在双曲线上F19F2=90°,若Rt△F1PF2的面积等于1,则实数a= 设双曲线x^2/a^2-y^2=1(a>0)的焦点为F1,F2,点P在双曲线上,且向量PF1*向量PF2=0求△F1PF2的面积 设P是等轴双曲线x^2-y^2=a^2(a>0)右支上一点,F1,F2是左右焦点,若向量PF2*F1F2=0,|PF1|=6,双曲线方程? 双曲线渐近线方程问题设F1,F2分别为双曲线x^2/a^2-y^2/b^2=1的左右焦点若在双曲线右支上存在点P满足PF2=F1F2且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为 一道双曲线题,急,设F1 F2分别为双曲线(x^2)/(a^2)-(y^2)/(b^2)=1的左右焦点,若在双曲线右支上存在点P,满足PF1=F1F2且F2到直线PF1的距离等于双曲线的实轴长,求该双曲线的渐近线方程 设双曲线x^2/a^2-y^2/b^2=1的左右焦点为F1,F2,P是双曲线右支上的一点设双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点为F1,F2,P是双曲线右支上的一点,△PF1F2的内切圆与x轴切于点Q(1,0),且|F1Q|=4,求双 P为双曲线(x^2)/(a^2)-(y^2)/(b^2)上任意一点,F1,F2是双曲线的焦点,从F1作角F1PF2的角平分线的垂线...P为双曲线(x^2)/(a^2)-(y^2)/(b^2)上任意一点,F1,F2是双曲线的焦点,从F1作角F1PF2的角平分线的垂线,垂足 设P为双曲线X^2-Y^2=1上的一点,F1,F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为(...设P为双曲线X^2-Y^2=1上的一点,F1,F2是双曲线的两个焦点,若|PF1|:|PF2|=3:2,则三角形PF1F2的面积为( 双曲线的题.设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点设F1、F2分别是双曲线(x^2)-(y^2 /9)=1的左右焦点,若点P在双曲线上,且PF1向量*PF2向量=0,则|PF1向量+PF2向量|=?答案是2根号10.可是我算不出. 设F1.F2分别为双曲线x^2/a^2-y^2/b^2=q的左右焦点,若在双曲线的右之上存在点p,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,这该双曲线的渐进线方程是, 设O为坐标原点,F1、F2为双曲线x^2/a^2-y^2/b^2=1的焦点(存在点P,使得角F1PF2=60°OP=根号7a,求渐近线方设O为坐标原点,F1、F2为双曲线x^2/a^2-y^2/b^2=1的焦点(a>0,b>0),若双曲线上存在点P,使得角F1PF2=60°OP=