微分方程通解:xdx+(x平方*y+y三次方+y)dy=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:48:52
微分方程通解:xdx+(x平方*y+y三次方+y)dy=0
xTJ@~=o몗( X& QxST} gw Q(3}L;'wb>9ܿF~d(M!jHS=o1%evvbY7h f!=Xޚ =\+C*F21pKoUPs)W-\mml8Z$#`Z$?PF) Ԑ)€kry`ܟ'/2E}{ Gc1!X

微分方程通解:xdx+(x平方*y+y三次方+y)dy=0
微分方程通解:xdx+(x平方*y+y三次方+y)dy=0

微分方程通解:xdx+(x平方*y+y三次方+y)dy=0
0.5*(x^2)+0.5x^2*y^2+0.25y^4+0.5y^2

想想

0 = xdx + (x^2y + y^3 + y)dy = xdx + x^2ydy + (y^3 + y)dy,
xdx/dy = -x^2y - y^3 - y
x = e^u, dx/dy = e^udu/dy, u = lnx,
e^u*e^udu/dy = -e^(2u)y - y^3 - y,
du/dy = -y -(y^3 - y)e^(-2u),...

全部展开

0 = xdx + (x^2y + y^3 + y)dy = xdx + x^2ydy + (y^3 + y)dy,
xdx/dy = -x^2y - y^3 - y
x = e^u, dx/dy = e^udu/dy, u = lnx,
e^u*e^udu/dy = -e^(2u)y - y^3 - y,
du/dy = -y -(y^3 - y)e^(-2u),
dt/dy = -y, t = -y^2/2.
z = u - t, u = z + t,
dz/dy = du/dy - dt/dy = -y -(y^3 - y)e^(-2u) - (-y)
= -(y^3 - y)e^(-2u) = -(y^3 - y)e^[-2(z-y^2/2)] = -(y^3 - y)e^[-2z + y^2] = -y(y^2 - 1)e^(-2z)*e^(y^2),
e^(2z)dz = -y(y^2 - 1)e^(y^2)dy = -(y^2 - 1)e^(y^2)d(y^2)/2,
2e^(2z)dz = (1 - y^2)e^(y^2)d(y^2)
d[e^(2z)] = d[(2-y^2)e^(y^2)],
e^(2z) = (2-y^2)e^(y^2) + C. C = const.
2z = ln|(2-y^2)e^(y^2) + C|,
u = z + t = (1/2)ln|(2-y^2)e^(y^2) + C| - y^2/2.
x = e^u = e^[(1/2)ln|(2-y^2)e^(y^2) + C| - y^2/2]
= e^[(1/2)ln|(2-y^2)e^(y^2) + C|]*e^[- y^2/2]
= |(2-y^2)e^(y^2) + C|^(1/2)*e^(-y^2/2)
= |2 - y^2 + Ce^(-y^2)|^(1/2),

收起

http://hi.baidu.com/lxwyh/blog