已知圆O:x^2+y^2=1,O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆x^2/2+y^2=1交于不同的两点A,B.(1)设b=f(k),求f(k)的表达式.(2)若向量OA*向量OB=2/3,求直线l的方程.(3)若向量OA*向量OB=m(2/3≤m

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:34:23
已知圆O:x^2+y^2=1,O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆x^2/2+y^2=1交于不同的两点A,B.(1)设b=f(k),求f(k)的表达式.(2)若向量OA*向量OB=2/3,求直线l的方程.(3)若向量OA*向量OB=m(2/3≤m
xTOo0*=:KnOS\)=^  .C5F[hڿVMvH|)NӾ?;IV!qjMBTB(ʾ7NpRpw^-蝆pKmGe6k mx_`?fzbO{/x

已知圆O:x^2+y^2=1,O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆x^2/2+y^2=1交于不同的两点A,B.(1)设b=f(k),求f(k)的表达式.(2)若向量OA*向量OB=2/3,求直线l的方程.(3)若向量OA*向量OB=m(2/3≤m
已知圆O:x^2+y^2=1,O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆x^2/2+y^2=1交于不同的两点A,B.
(1)设b=f(k),求f(k)的表达式.
(2)若向量OA*向量OB=2/3,求直线l的方程.
(3)若向量OA*向量OB=m(2/3≤m≤3/4),求三角形OAB面积的取值范围.

已知圆O:x^2+y^2=1,O为坐标原点,一条直线l:y=kx+b(b>0)与圆O相切并与椭圆x^2/2+y^2=1交于不同的两点A,B.(1)设b=f(k),求f(k)的表达式.(2)若向量OA*向量OB=2/3,求直线l的方程.(3)若向量OA*向量OB=m(2/3≤m
(1)kx-y+b=0
b/√(1+k2)=1
f(k)=√(1+k2)
(2) A(x1,y1) B(x2,y2)
x1x2+y1y2=2/3
把y=kx+b代入x^2/2+y^2=1
(1+2k2)x2+4bkx+2b2-2=0
x1x2=(2b2-2)/(1+2k2)=2k2/(1+2k2)
x1+x2=-4bk/(1+2k2)
y1y2=k^2x1x2+kb(x1+x2)+b2
=2k^4/(1+2k2)-4k2b2/(1+2k2)+b2
所以
2k^4/(1+2k2)-4k2b2/(1+2k2)+b2+2k2/(1+2k2)=2/3
解得k=±1 ,b=√2
所以直线l的方程y=±x+√2
(3)
2k^4/(1+2k2)-4k2b2/(1+2k2)+b2+2k2/(1+2k2)=m
(k2+1)/(2k2+1)=m
2/3≤m≤3/4
2/3≤(k2+1)/(2k2+1)≤3/4
得1/2≤k2≤1
又由(1+2k2)x2+4bkx+2b2-2=0
x1x2=(2b2-2)/(1+2k2)=2k2/(1+2k2)
x1+x2=-4bk/(1+2k2)
得|AB|=2√2√(1+k2)√k2/(1+2k2)
高为1
所以面积S=1/2*2√2√(1+k2)√k2/(1+2k2)
因为1/2≤k2≤1
所以S的范围为

已知圆O以坐标原点为圆心,直线l:x+y-1=0被圆O截得的线段长为根号10,1)求圆O的方程.2)设B(x,y)是圆O...已知圆O以坐标原点为圆心,直线l:x+y-1=0被圆O截得的线段长为根号10,1)求圆O的方程.2)设B(x,y)是圆 已知抛物线方程y^2=4x,o是坐标原点,A,B为. 已知抛物线Y=1/2X,O为坐标原点;F为抛物线的焦点.求OF的值 已知O点为坐标原点,点M(2,-1),点N(x,y)的坐标x,y满足不等式组x+y=-1,y>=0,则2x-y的最小值为 已知直线y=—2X+4,它与x轴的交点为A,与y轴的交点为B 1求A,B两点的坐标 2求三角形AOB的面积(o为坐标原已知直线y=—2X+4,它与x轴的交点为A,与y轴的交点为B (1)求A,B两点的坐标 (2)求三角形AOB 已知点P(x,y)在圆C:x^2+y^2-6x-6y+14=0上,点O为坐标原点 (1)求y/x已知点P(x,y)在圆C:x^2+y^2-6x-6y+14=0上,点O为坐标原点(1)求y/x的最大值和最小值(2)求x^2+y^2+2x+3的最大值和最小值 已知椭圆x^2/2+y^2=1的左焦点为F,O为坐标原点(1)求过点O、F,并且与椭圆的左准线l相切的圆的方程(2) 已知双曲线x^2-y^2=1的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线(2013绍兴市模拟)已知双曲线x^2-y^2=1(a>0,b>0)的右焦点为F,O为坐标原点,以OF为直径的圆与双曲线的一条渐近线 已知椭圆x/2+y=1的左焦点为F,O为坐标原点,求过点O,F,并且与椭圆的左准线L相切的圆的方程 已知抛物线y^2=-x与直线y=k(x+1)相交于A、B两点,O为坐标原点,求证OA垂直OB 已知椭圆(x^2)/2 +y^2=1的左焦点为F,O为坐标原点.求过点O,F,并与椭圆的左准线l相切的圆的方程?已知椭圆(x^2)/2 +y^2=1的左焦点为F,O为坐标原点.求过点O,F,并与椭圆的左准线l相切的圆的方程 已知椭圆x^2/2+y^2=1的左焦点为F,O为坐标原点(1)求过点O、F,并且与椭圆的左准线l相切的圆的方程(2)已知椭圆x^2/2+y^2=1的左焦点为F,O为坐标原点(1)求过点O、F,并且与椭圆的左准线l相切 已知圆C的圆心在曲线xy=2上,圆C与x轴交于点O.A,与y轴交于点O.B,O为坐标原点.求三角形AOB的面积 已知圆M的方程为:x²+y²-2x-2y-6=0,以坐标原点为圆心的圆O与圆M相切已知圆M的方程为:x²+y²-2x-2y-6=0,以坐标原点为圆心的圆O与圆M相切1.求圆O方程2.圆O与X轴交于E.F两点,圆内的动点D 已知F1,F2分别是(x^2)/(a^)-(y^2)/(b^2)=1的左右焦点,已坐标原点O为圆心,OF1为半径的圆与双曲线在第已知F1,F2分别是双曲线(x^2)/(a^)-(y^2)/(b^2)=1的左右焦点,已坐标原点O为圆心,OF1为半径的 已知圆C:x²;+y²;-2x+4y-4=0,一条斜率等于1的直线l与圆C交于点A,B两点,(1)求弦AB最长时已知圆C:x²;+y²;-2x+4y-4=0,一条斜率等于1的直线l与圆C交于点A,B两点,若∠AOB为钝角(其中O为坐标原 已知动点P(x,y)满足x^2+y^2-2|x|-2|y|=0,O为坐标原点,则|PO|的取值范围是 已知动点P(x,y)满足x^2+y^2-|x|-|y|=0,O为坐标原点,则|PO|的取值范围是