如图所示,对称轴为直线X=7/2的抛物线经过点A(6,0)和B(0,4)(1)求抛物线的解析式及顶点坐标.(2)设点E(X,Y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 21:31:56
如图所示,对称轴为直线X=7/2的抛物线经过点A(6,0)和B(0,4)(1)求抛物线的解析式及顶点坐标.(2)设点E(X,Y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,
xXOWWFZi*cb-ʕW?%} v_TUn `4@(|'윙sfΜ16%ݕvso7OX)-4ݝ^n:`N6܍YTu†ۮxyI3u)N="'G'!Ƭau*ROζZ~3쥱zMknFvۍ%`wZEΚ2NΤv Xȫ[R?nϹ~I S.pLzܷvszL==rCg6-/Uz\dzfXX6 ^#"B|$IgDNYᵳ3̫K~1"$Qu{+g_z3oQe٩n, x;8v✻t8ywq~>b F<>d{ʞ3_{/׌QR-S9"ó*`Er NYoJnW)tT&w*  Sdn]Ȓ>UG(|BrObA"DsQ8뗝i LyiK^&E y[B j7Ap@H[E=$inY8VFW]#߫x%СM<99e:u}Ԅ_#FkqRC1$ g(Ya~o6 `) Ӯ{'G4HJ}F5p"b9ċJ!B]ߙEi;}TI+}d@{=?bV*o'~TeYU7Z*>@exםک/Ya;}`o9[0+3om9뽼ŕ4u>S#$_^g}5' wK\is WdcP4n=4e k0>,Hww^a4 R3[C4 K i/qP DYLՐBѠR1222Hnof.N~_T4X1l@RC$3WF2K(7+GT4~YM&׿|av[36>mƒ"%;4Eh2D)&W%'T  - >q&Gd&$l$fRIj+Hg"Y"(L2+K&h nSM.j`(ئp#9Sݵd:,I)rdK"#'Dq=y{&w}8ڜU\;^+}҉tЉ|/;vrE;pgX!fBeDXG lZܐ ۞INOΏZ>!Q}SwJ0fAwA^*C!52k>J [`?IBTRgD5g `)c^n7t`ՕeΈi[4U[dⱋ0Na #-HOkh6iEFVX϶DjHcST$y'II@~9EM8 [EGAn:<~lL|Q$UQcF~aK($nE+ؐc~%2O_ a.ZX!h F Z]4FoIFoË֨? "]i88LId,l#:?nۭHdB;_t7>Q/ψ[Vnc1~DԵOTb([l:an}o@e]`Hƃ1ٍdNZ#o׮ ff79j4ޮцєK9AߵTP1*|DF61½Rt9!P Wrl6$J:h*]ۛ؃Z8JS֮]Q?n}Sj\/E&V{fF|vuT

如图所示,对称轴为直线X=7/2的抛物线经过点A(6,0)和B(0,4)(1)求抛物线的解析式及顶点坐标.(2)设点E(X,Y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,
如图所示,对称轴为直线X=7/2的抛物线经过点A(6,0)和B(0,4)
(1)求抛物线的解析式及顶点坐标.
(2)设点E(X,Y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形的OEAF的面积S与X之间的函数关系式,并写出自变量X的取值范围.
(3)1.当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
2.是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由

如图所示,对称轴为直线X=7/2的抛物线经过点A(6,0)和B(0,4)(1)求抛物线的解析式及顶点坐标.(2)设点E(X,Y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,
河南省2007年数学中招试题23题
(1)由抛物线的对称轴是 ,可设解析式为 .
把A、B两点坐标代入上式,得
解之,得
故抛物线解析式为 ,顶点为
(2)∵点 在抛物线上,位于第四象限,且坐标适合
,
∴y0,-y表示点E到OA的距离.
∵OA是 的对角线,
∴ .
因为抛物线与 轴的两个交点是(1,0)的(6,0),所以,自变量 的
取值范围是1< <6.
① 根据题意,当S = 24时,即 .
化简,得 解之,得
故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
点E1(3,-4)满足OE = AE,所以 是菱形;
点E2(4,-4)不满足OE = AE,所以 不是菱形.
② 当OA⊥EF,且OA = EF时,是正方形,此时点E的
坐标只能是(3,-3).
而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,
使 为正方形
显示不出来,你去我给你网址
这里有下载```

(1)因为抛物线的对称轴是x=72,
设解析式为y=a(x-72)2+k.
把A,B两点坐标代入上式,得 a(6-
72)2+k=0a(0-
72)2+k=4,
解得a=23,k=-256.
故抛物线解析式为y=23(x-72)2-256,顶点为( 72,-256).
(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=23(x-7...

全部展开

(1)因为抛物线的对称轴是x=72,
设解析式为y=a(x-72)2+k.
把A,B两点坐标代入上式,得 a(6-
72)2+k=0a(0-
72)2+k=4,
解得a=23,k=-256.
故抛物线解析式为y=23(x-72)2-256,顶点为( 72,-256).
(2)∵点E(x,y)在抛物线上,位于第四象限,且坐标适合y=23(x-72)2-256,
∴y<0,
即-y>0,-y表示点E到OA的距离.
∵OA是四边形OEAF的对角线,
∴S=2S△OAE=2×12×OA•|y|=-6y=-4(x-72)2+25.
因为抛物线与x轴的两个交点是(1,0)和(6,0),
所以自变量x的取值范围是1<x<6.
(3)根据题意,当S=24时,即-4(x-72)2+25=24.
化简,得(x-72)2=14.
解得x1=3,x2=4.
故所求的点E有两个,
分别为E1(3,-4),E2(4,-4),
点E1(3,-4)满足OE=AE,
所以平行四边形OEAF是菱形;
点E2(4,-4)不满足OE=AE,
所以平行四边形OEAF不是菱形;
∴不一定,由S=24可角得x=3或x=4,当时x=3是菱形,当x=4时不是菱形.
(4)E1(2.5,-73),F1(3.5,72);E2(-52,1196),F2(72,1196);E3(192,1196),F3(72,1196).

收起

考点:二次函数综合题.分析:(1)根据对称轴设抛物线的解析式为y=a(x+
72)2+k,将A、B两点坐标代入,列方程组求a、k的值;
(2)根据平行四边形的性质可知S=2S△OAE,△OAE的底为AO,高为E点纵坐标的绝对值,由此列出函数关系式,①当S=24时,由函数关系式得出方程,求x的值,再逐一判断;②不存在,只有当0E⊥AE且OE=AE时,□OEAF是正方形,由此求出E点...

全部展开

考点:二次函数综合题.分析:(1)根据对称轴设抛物线的解析式为y=a(x+
72)2+k,将A、B两点坐标代入,列方程组求a、k的值;
(2)根据平行四边形的性质可知S=2S△OAE,△OAE的底为AO,高为E点纵坐标的绝对值,由此列出函数关系式,①当S=24时,由函数关系式得出方程,求x的值,再逐一判断;②不存在,只有当0E⊥AE且OE=AE时,□OEAF是正方形,由此求出E点坐标,判断E点坐标是否在抛物线上.(1)设抛物线的解析式为y=a(x+72)2+k(k≠0),
则依题意得:2425a+k=0,494a+k=4
解之得:a=23,
k=-256
即:y=23(x+72)2-256,顶点坐标为(-72,-256);
(2)∵点E(x,y)在抛物线上,且位于第三象限.
∴S=2S△OAE=2×12×0A×(-y)
=-6y
=-4(x+72)2+25 (-6<x<-1);
①当S=24时,即-4(x+72)2+25=24,
解之得:x1=-3,x2=-4
∴点E为(-3,-4)或(-4,-4)
当点E为(-3,-4)时,满足OE=AE,故□OEAF是菱形;
当点E为(-4,-4)时,不满足OE=AE,故□OEAF不是菱形.
②不存在.
当0E⊥AE且OE=AE时,□OEAF是正方形,此时点E的坐标为(-3,-3),
而点E不在抛物线上,故不存在点E,使□OEAF为正方形.点评:本题考查了二次函数的综合运用.关键是根据已知条件求抛物线解析式,根据平行四边形的性质表示面积,由特殊平行四边形的性质确定E点坐标,判断E点坐标是否在抛物线上,确定存在性.

收起

(1)由抛物线的对称轴是 ,可设解析式为 .
把A、B两点坐标代入上式,得
解之,得
故抛物线解析式为 ,顶点为
(2)∵点 在抛物线上,位于第四象限,且坐标适合

∴y<0,即 -y>0,-y表示点E到OA的距离.
∵OA是 的对角线,
∴ .
因为抛物线与 轴的两个交点是(1,0)的(6,0),所...

全部展开

(1)由抛物线的对称轴是 ,可设解析式为 .
把A、B两点坐标代入上式,得
解之,得
故抛物线解析式为 ,顶点为
(2)∵点 在抛物线上,位于第四象限,且坐标适合

∴y<0,即 -y>0,-y表示点E到OA的距离.
∵OA是 的对角线,
∴ .
因为抛物线与 轴的两个交点是(1,0)的(6,0),所以,自变量 的
取值范围是1< <6.
根据题意,当S = 24时,即 .
化简,得 解之,得
故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
点E1(3,-4)满足OE = AE,所以 是菱形;
点E2(4,-4)不满足OE = AE,所以 不是菱形.
当OA⊥EF,且OA = EF时, 是正方形,此时点E的
坐标只能是(3,-3).
而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E,
使 为正方形.
造福千万家~~~~嘿嘿~~~~

收起

如图所示,对称轴为直线X=7/2的抛物线经过点A(6,0)和B(0,4) 抛物线y=x²+10x-7的对称轴为直线________ 抛物线y=2[x-2]的平方+3的对称轴为直线 已知一个二次函数的图像过如图所示三点 1、求抛物线的对称轴2、平行于x轴的直线l的解析式为y=25/4,抛物线与x轴交于AB两点,在抛物线的对称轴上找点P,使BP的长等于直线l与x轴间的距离, 请写出一个以直线x=-2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式,这条抛物线的表达式可以是 如图所示,对称轴为直线X=7/2的抛物线经过点A(6,0)和B(0,4)(1)求抛物线的解析式及顶点坐标.(2)设点E(X,Y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形, 如图,对称轴为直线x=7/2的抛物线经过点A(6,0)和点B(0,4)1.求抛物线解析式及顶 对称轴为直线x=7/2的抛物线经过点A(6,0)B(0,4),求抛物线解析式及顶点坐标 【数学】如图所示,已知抛物线的对称轴是直线x=5/2,抛物线与x轴相交于A、B(4,0)两点,如图所示,已知抛物线的对称轴是直线x=5/2,抛物线与x轴相交于A、B(4,0)两点,与y轴相交于点C(0,-2).(1 抛物线y=2x平方-bx+3的对称轴是直线X=1,则b的值为? 抛物线y=2x²-bx+3的对称轴是直线x=1,则b的值为 抛物线y=2x²-bx+3 的对称轴是直线x=1.则b的值为? 已知抛物线y=-2x²+bx的对称轴为直线x=1,则b=? 抛物线y=x²-mx+2的对称轴为直线x=4,则m=?快哟 抛物线y=2x^2的对称轴为____. 矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-3/4x与BC边相交于D点.1.若抛物线y=ax^2-4/9x经过点A,试确定此抛物线的表达式2.设1中的抛物线的对称轴与直线OD 已知抛物线y1=ax的平方+bx的对称轴为直线x=3,最高点在直线y2=2x+3上,求抛物线的解析式?已知抛物线y1=ax的平方+bx的对称轴为直线x=3,最高点在直线y2=2x+3上,求(1)抛物线的解析式?(2)在同一坐标系中 已知一条抛物线过点(3,-2)(0,1)且它的对称轴为直线X=3,