求(3-1)(3+1)(3²+1)(3⁴+1)···(3³²+1)+1的个位数字是几
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:19:52
xSN0&&0Z+D?#1D<>蟘<
a[ڝsjY
2,Gf᰾F^ ^ m '!ކP,%4N/Q'z^fOReӼ$<@1Da]aE߭nU3H0nFMsj2r56l2J6y4FYs=bz>oZ?-\ՎFOfv.ƀ߆\P7I*,Bt靴gct0V{uӆSv
求(3-1)(3+1)(3²+1)(3⁴+1)···(3³²+1)+1的个位数字是几
求(3-1)(3+1)(3²+1)(3⁴+1)···(3³²+1)+1的个位数字是几
求(3-1)(3+1)(3²+1)(3⁴+1)···(3³²+1)+1的个位数字是几
(3-1)(3+1) (3^2+1)+……+(3^32+1)+1
=(3^2-1)(3^2+1)+……+(3^32+1)+1
=(3^4-1)(3^4+1)+……+(3^32+1)+1
=3^64-1+1=3^64
(3-1)(3+1)(3²+1)(3⁴+1)···(3³²+1)+1
=(3^2-1)(3^2+1)(3^4+1)···(3^32+1)+1
=(3^4-1)(3^4+1)···(3^32+1)+1
=(3^32-1)(3^32+1)+1
=(3^64-1)
=3^64
=(3^4)^16
=(81)^16
所以个位是1
(3-1)(3+1)(3²+1)(3⁴+1)···(3³²+1)+1
=(3³²-1)(3³²+1)+1=3的64次方-1+1=3的64次方
因为1.3.9.7.所以64÷4=16,所以个位是1
(3-1)(3+1)=3^2-1 (3^2-1)(3^2+1)=3^4-1 以此类推最后就是3^64-1 再加个1就是3^64
3^1=3 3^2=9 3^3=27 3^4=81 3^5=243 所以3的n次方的个位数字是四个一循环,所以3^64的个位数字是1