已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E为ABCD外一点,且AE⊥CE,求证:BE⊥DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:39:50
已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E为ABCD外一点,且AE⊥CE,求证:BE⊥DE
xT]OV+RwCo;+ʼn&l+d Ӥ]5ԡ66)L*PVI 0۹/OB, W,弟>MzjqTE;i9uqt U:g鉜kMm -5vnnV%/GO*)1ycZ(MFX!M S$9Mlе-a>"Mm. ɈE3mjiQ $ۚ% +h4|,9*$mRzE:cZ\/ ź},r&Osp,o 1f#,(bAӐF?(wG 4%jL4dk!Z'XZ4uMM2o hr,`0iuʶ9V1*W,#*8mChQStBciPe˭`MUpP Ǵ˼vNQ\z"a 37-#K\ER7a

已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E为ABCD外一点,且AE⊥CE,求证:BE⊥DE
已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E为ABCD外一点,且AE⊥CE,求证:BE⊥DE

已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E为ABCD外一点,且AE⊥CE,求证:BE⊥DE
鄙瓜来也~具体过程兔你到邮箱看.先给分啊~给分~不给画圈圈~(楼上的也是正解.围观者可以看楼上.哈哈~)

证明:连接OE,在△AEC中,

∵四边形ABCD是矩形,

∴AC=BD,OC=OD,OA=OC,

∴OA=OB=OC=OD,

∵AE⊥EC,

∴OE=OA.

∴OE=OB=OD,

∴∠OBE=∠OEB,∠OED=∠ODE.

∵∠ODE+∠OED+∠OBE+∠OEB=180°,

∴2(∠OEB+∠OED)=180°,

∴∠BED=90°,

∴BE⊥DE. 

由题设,AO=BO=CO=DO.
又AE⊥CE,所以EO为直角△ACE斜边中线,EO=AO=BO=CO=DO
所以∠OBE=∠OEB, ∠ODE=∠OED
而三角形内角和为180度,∠OBE+∠OEB+∠ODE+∠OED=180度
故∠OEB+∠OED=90度,BE⊥DE

证明:连接OE ∵点O平分AC(矩形的对角线互相平分) 且∠AEC=90°(已知)∴EO=AO=CO=1/2AC(直角三角形斜边上的中线等于斜边的一半 ∵BO=DO=1/2BD=AO=CO=1/2AC(矩形的对角线互相平分且相等) ∴OE=BO=DO=1/2BD(等量代换) ∴∠BED=90°(第三条理由的逆命题) ∴BE⊥DE...

全部展开

证明:连接OE ∵点O平分AC(矩形的对角线互相平分) 且∠AEC=90°(已知)∴EO=AO=CO=1/2AC(直角三角形斜边上的中线等于斜边的一半 ∵BO=DO=1/2BD=AO=CO=1/2AC(矩形的对角线互相平分且相等) ∴OE=BO=DO=1/2BD(等量代换) ∴∠BED=90°(第三条理由的逆命题) ∴BE⊥DE

收起

如图,在矩形ABCD中,对角线 已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E为ABCD外一点,且AE⊥CE,求证:BE⊥DE 已知;如图在平行四边形ABCD中,两边对角线AC,BD相交于点O角1=角2,求证;平行四边形ABCD是矩形. 如图在矩形ABCD中,已知AB=2,BC=3对角线AC的垂直平分线分别交AD、BC,连接EC则CE=? 如图在矩形ABCD中,已知AB=2,BC=3对角线AC的垂直平分线分别交AD、BC,连接EC则CE=? 如图,在矩形ABCD中,对角线AC与BD相交于O.矩形周长20CM四个小三角形周长68CM,则对角线长? 如图,在矩形ABCD中,对角线AC和BD相交于点O,E为矩形ABCD外地一点,且AE⊥CE,求证:BE⊥DE 如图,在矩形ABCD中,对角线AC,BD交于点O,AD=4cm.角AOD=60°,求矩形ABCD的面积 如图在矩形ABCD中,对角线AC,BD交于点O,AD=4cm,∠AOD=60°,求矩形ABCD的面积 如图,在矩形abcd中 对角线ac与bd相交于点o 角ACB=30° BD=4 求矩形ABCD的面积 如图,在矩形ABCD中,对角线AC与BD相交于点O,角ACB=30度,BD=4,求矩形ABCD的面积. 如图:在矩形abcd中,对角线ac与bd相交于点o,∠acb=30度,bd=4,去矩形的abcd的面积. 如图,在矩形ABCD中,对角线AC与BD相交于点O,角ACB=30度,BD=4,求矩形ABCD的面积. 如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOD=120°,AB+AC=9,求对角线BD的长及 已知:如图,在矩形ABCD中,对角线AC与BD相交于O,点M,P,N,Q分别在AO,BO,CO,DO上,且AM=BP=CN=DQ.求证:四边形MPNO是矩形. 已知,如图,在矩形ABCD中,对角线,AC与BD相交于O,点M,P,N,Q分别在,AO,BO,CO,DO上,且AM=BP=CN=DQ,求证:四边形MPNQ是矩形 已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,点M,P,N,Q分别在AO,BO,CO,DO上且AM等于BP等于CN等于DQ,求证,四边形MPNQ是矩形 已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,点M,N,P,Q分别在AO,BO,CO,DO上,且AM=BP=CN=DQ.求证:四边形MPNO是矩形.