24、、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD. (1)求点C,D的坐标及四边形ABDC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:26:28
24、、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD. (1)求点C,D的坐标及四边形ABDC
xVN#G~r3x!Prk=0޵!}M=_!_wl!+EfkKn<$L]BOirP(+-dX1f_-JpO`CR=Jva'"N@Xovf,נQi*-hf26q]i-&w-3Ih4'iQ|ޤ,D{R~(a'55aay6ޤmRW^d"'/ 0T6⹱"wO Hwnm7aԭȂn؟>Yڠ.ه[&!

24、、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD. (1)求点C,D的坐标及四边形ABDC
24、、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积
(2)在y轴上是否存在一点P,连接PA,PB,使=,
若存在这样一点,求出点P的坐标,若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.

24、、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD. (1)求点C,D的坐标及四边形ABDC
坐标:C(0,2);D(4,2)
面积:S=4*2=8
P点不存在,不论AB两点在哪里,P点都不可能存在!l因为平行的定理是:在同一平面内,不相交的两条直线叫做平行线.既然PA,PB有一个共同点P,怎么会平行呢?
第三个问题没看明白,什么:①的值不变,②的值不变,(我也没看到你的图.)

(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=
1
2
×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥A...

全部展开

(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=
1
2
×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,

∠DCP+∠BOP
∠CPO =1.

收起

(1)C(0,2) D(4,2)面积为:4*2=8
(2)不存在,可根据勾股定理等来说明。
(3)不明白题目的意思……

感觉提问者采纳中的第二问回答错了。。。。。好像是存在的,P为(0,4)或(0,-4)

(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,...

全部展开

(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,
∴①=1.

收起

(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,...

全部展开

(1)依题意,得C(0,2),D(4,2),
∴S四边形ABDC=AB×OC=4×2=8;
(2)存在.
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,解得h=4,
∴P(0,4)或(0,-4);
(3)结论①正确,
过P点作PE∥AB交OC与E点,
∵AB∥PE∥CD,
∴∠DCP+∠BOP=∠CPE+∠OPE=∠CPO,
∴=1.

收起

如图,在平面直角坐标系中,A点是第二象限内一点 如图在平面直角坐标系中 如图,在平面直角坐标系中,已知直角梯形 如图,在平面直角坐标系中,三角形AOB为等腰直角三角形,A(4,4).1,求B点坐标; 如图,在平面直角坐标系中,点A,B坐标分别为(8,4),(0,4), 如图 在平面直角坐标系xoy中 直线y=kx+b交x轴于点A 如图'在平面直角坐标系中'过格点ABC做一圆弧 如图,在平面直角坐标系中,点P从原点O出发 如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60° 如图,在平面直角坐标系中...如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°如图,在平面直角坐 如图,在平面直角坐标系xoy中 如图在平面直角坐标系XOY中一次函数 如图在平面直角坐标系中Rt三角形OAB 如图,在平面直角坐标系中,已知点p(1,4),点a在坐标轴上,三角形pao的面积等于4,求点a坐标 如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).如图,在平面直角坐标系中,四边形OABC是矩如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).(1)直接写出A、C两点 如图平面直角坐标系中 如图,在平面直角坐标系中,点A的坐标是( 1,0),点B的坐标是(0,根号3),点C在如图,在平面直角坐标系中,点A的坐标是( 1,0),点B的坐标是(0,根号3),点C在坐标平面内,若以A,C为顶点 一条平面直角坐标系的初三数学题如图,在平面直角坐标系中,点A的坐标是(1,1),对于三角形ABC:设点B在坐标轴上,C(x,0)且x 如图,在平面直角坐标系中,a(4,4),b(1,0),c(5,1)