a,b是不相等的正数,a,x,y,b成等差数列,a,m,n,b成等比数列问x+y与m+n的大小关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 22:57:12
a,b是不相等的正数,a,x,y,b成等差数列,a,m,n,b成等比数列问x+y与m+n的大小关系
a,b是不相等的正数,a,x,y,b成等差数列,a,m,n,b成等比数列问x+y与m+n的大小关系
a,b是不相等的正数,a,x,y,b成等差数列,a,m,n,b成等比数列问x+y与m+n的大小关系
a,x,y,b依次成等差数列
x+y=a+b
a,m,n,b依次成等比数列
mn=ab
m+n>2√(mm)
m+n>2√(ab)
(x+y)-(m+n)
=a+b-(m+n)
0
(x+y)-(m+n)<0
(x+y)<(m+n)
事实上, x>m, y>n.
证明:因为x = (2a+b)/3, m = 3次根号下(a^2*b), 所以 x=(a+a+b)/3 > 3次根号下(a*a*b) = m. 即x>m.
y>n的证明同理。
这里所用到的是三项的算术-几何均值不等式,即:
对正数x,y,z, (x+y+z)/3 >= 3次根号下(x*y*z),当且仅当x=y=z是取等号。
全部展开
事实上, x>m, y>n.
证明:因为x = (2a+b)/3, m = 3次根号下(a^2*b), 所以 x=(a+a+b)/3 > 3次根号下(a*a*b) = m. 即x>m.
y>n的证明同理。
这里所用到的是三项的算术-几何均值不等式,即:
对正数x,y,z, (x+y+z)/3 >= 3次根号下(x*y*z),当且仅当x=y=z是取等号。
注:楼上 中华才俊网 - 大魔导师 十二级(x+y)-(m+n)
=a+b-(m+n)
0 不可以推出(x+y)-(m+n)<0。两个等号不同向。
收起
等差数列:x+y=a+b;
等比数列:设公比q,因a,b>0,则q>0;
m+n=a(q+q^2);a+b=a(1+q^3);(a+b)-(m+n)=a(q^3-q^2-q+1)=a(q+1)*(q-1)^2>0;
所以a+b>m+n
所以x+y>m+n
a,b是不相等的正数
a,m,n,b成等比数
假设等比q,q=(b/a)^(1/3)>0
m+n=qa+q^2a
a,x,y,b成等差数列
x+y=a+b=a(1+q^3)
a+b-(m+n)
=a(q+q^2-1-q^3)
=a(q-1)(1-q)(1+q)
=-a(1-q)^2(1+q)
<0
所以:
x+y