求y=(sinx)^tanx的导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 13:34:00
求y=(sinx)^tanx的导数
x){V83B3$1<&H~ A9y q-  ,^ҕ e+L/(0궭" Ev20H~qAbw6`  ]7>lx{)0kA<=ٱžO 0,t*X_ pс[PtFKzN耨*H!P.qF8 dH^4X-T!WG

求y=(sinx)^tanx的导数
求y=(sinx)^tanx的导数

求y=(sinx)^tanx的导数
求y=(sinx)^tanx的导数
ln(y)=tanx*ln(sinx)
y'/y=(secx)^2*ln(sinx)+tanx*cosx/sinx=(secx)^2*ln(sinx)+1
y'=y[(secx)^2*ln(sinx)+1]
=(sinx)^tanx*[(secx)^2*lnsinx+1]

y=(sinx)^(tanx)
所以
lny=ln(sinx)^(tanx)
lny=tanxln(sinx)
两边对x求导,x是y的函数,所以y对x求导就是复合函数的求导
y'/y=1/cos^2xln(sinx)+tanx*cosx/sinx
y'/y=ln(sinx)/cos^2x+1
所以
y'=[ln(sinx)/cos^2x+1]*(sinx)^(tanx)