求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:31:40
求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值
求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值
求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值
f(x)=[(sinx)^4+(cosx)^4+(sinx)^2(cosx)^2]/(2-sin2x)
f(x)=[(sinx)^4+(cosx)^4+2(sinx)^2(cosx)^2-(sinx)^2(cosx)^2]/(2-sin2x)
f(x)={[(sinx)^2+(cosx)^2]^2-(1/4)(2sinxcosx)^2}/(2-sin2x)
f(x)=[1-(1/4)sin(2x)^2]/(2-sin2x)
f(x)=[4-sin(2x)^2]/[4(2-sin2x)]
f(x)=[2+sin(2x)][2-sin(2x)]/[4(2-sin2x)]
f(x)=[2+sin(2x)]/4
f(x)=1/2+(1/4)sin(2x)
可见:最小正周期T为:T=2π/2=π
f(x)=1/2+(1/4)sin(2x)
因为:-1≤sin(2x)≤1
所以:1/4f(x)≤3/4
即:f(x)的最大值是3/4,最小值是1/4.
f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x) =((sinx)^4+(cosx)^4+2(sinx)^2(cosx)^2- 1/4*sin²2x)/(2-sin2x) =[(sin²x+cos²x)²-1/4*sin²2x]/(2-sin2x) =(1/4)(4-sin²2x)/(2-sin2x) =(1/4)*(2+sin2x)(2-sin2x)/(2-sin2x) =1/2+1/4*sin2x T=2π/2=π 2x=2kπ+π/2,k∈Z时,f(x)取得最大值3/4 2x=2kπ-π/2,k∈Z时,f(x)取得最小值1/4