求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:31:40
求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值
xS_kP*Mor͟/d$KkR1(B'>l_́"S-~~DMӲ:{~{n8уzEqߎ̑N 9yAb0X${x }~ǽnmA]|Wb\<-.td/JLG9lj1)i0AhҜri6~ 2cXqI?wy2e?1~9{zEW 8h {tOJbmDTzʣůS<iXhP):ATZAz^9m[,0XyHK- IV2Η<{ s$klִ+G<]TTI FS$;;[^9eTZG[[w'iNQb3 I-f%кGp% nU=?:NXL~T%um{"& MMt,-r%u AfBjblbU$.Zs-+تhg,XN(,m*f$RSUZ֜YA5[

求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值
求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值

求f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)的T,最大最小值
f(x)=[(sinx)^4+(cosx)^4+(sinx)^2(cosx)^2]/(2-sin2x)
f(x)=[(sinx)^4+(cosx)^4+2(sinx)^2(cosx)^2-(sinx)^2(cosx)^2]/(2-sin2x)
f(x)={[(sinx)^2+(cosx)^2]^2-(1/4)(2sinxcosx)^2}/(2-sin2x)
f(x)=[1-(1/4)sin(2x)^2]/(2-sin2x)
f(x)=[4-sin(2x)^2]/[4(2-sin2x)]
f(x)=[2+sin(2x)][2-sin(2x)]/[4(2-sin2x)]
f(x)=[2+sin(2x)]/4
f(x)=1/2+(1/4)sin(2x)
可见:最小正周期T为:T=2π/2=π
f(x)=1/2+(1/4)sin(2x)
因为:-1≤sin(2x)≤1
所以:1/4f(x)≤3/4
即:f(x)的最大值是3/4,最小值是1/4.

f(x)=((sinx)^4+(cosx)^4+(sinx)^2(cosx)^2)/(2-sin2x)

     =((sinx)^4+(cosx)^4+2(sinx)^2(cosx)^2- 1/4*sin²2x)/(2-sin2x)

     =[(sin²x+cos²x)²-1/4*sin²2x]/(2-sin2x)

     =(1/4)(4-sin²2x)/(2-sin2x)

     =(1/4)*(2+sin2x)(2-sin2x)/(2-sin2x)

     =1/2+1/4*sin2x

  T=2π/2=π

  2x=2kπ+π/2,k∈Z时,f(x)取得最大值3/4

  2x=2kπ-π/2,k∈Z时,f(x)取得最小值1/4