证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 20:39:38
证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.
xSN@.5Vpmj01QCtĚZep!C)|;w$c.dν>Hٮi61oG+pԣ2-@꘺cQ3"aHϽbz?ٴ1ހ,ΐwi۵:RLLfr9pAoOl)v;J tʯ0AϹ#%HUXU0HVeciRMZ >N|jy҉zt4D|ؒD/DUTُj`FҰ%LhKbwVIύ\u|.J<+LBx6C#5-jpy 7D=KƢ(󥅭Ue% cN ˹%

证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.
证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.

证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.
反证法:设f(x)在(-∞,+∞)内无界
因为f(x) 在(-∞,+∞) 内连续,且f(x)在(-∞,+∞)内无界,则当x趋于∞时f(x)也趋于∞
则limf(x)不存在
与已知矛盾
所以若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.

由极限的定义知,对任意的ε>0,存在M,使得当|x|>M时,|f(x)-A|<ε (A是极限),则|f(x)|又f(x)在(-∞,+∞) 内连续,所以在[-M,M]也连续,所以在[-M,M]上也连续,则在[-M,M]上存在一个最大值和一个最小值,则在[-M,M]上有界,即|f(x)|所以在(-∞,+∞)上|f(x)|

全部展开

由极限的定义知,对任意的ε>0,存在M,使得当|x|>M时,|f(x)-A|<ε (A是极限),则|f(x)|又f(x)在(-∞,+∞) 内连续,所以在[-M,M]也连续,所以在[-M,M]上也连续,则在[-M,M]上存在一个最大值和一个最小值,则在[-M,M]上有界,即|f(x)|所以在(-∞,+∞)上|f(x)|

收起