计算极限lim(x→0)[1-x^2-e^(-x^2)]/(sin2x)^4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:15:53
计算极限lim(x→0)[1-x^2-e^(-x^2)]/(sin2x)^4
x){nuӟk|9sBNfFţItFVihX}< 8"}rِmqJ4|{ tC݋.a C8M }tzƦ<7FFHfUcUif&h$A1@\z`

计算极限lim(x→0)[1-x^2-e^(-x^2)]/(sin2x)^4
计算极限lim(x→0)[1-x^2-e^(-x^2)]/(sin2x)^4

计算极限lim(x→0)[1-x^2-e^(-x^2)]/(sin2x)^4
lim(x→0)[1-x^2-e^(-x^2)]/(sin2x)^4 (等价无穷小代换)
=lim(x→0)[1-x^2-e^(-x^2)]/(16x^4) (0/0型 ,上下求导得)
=lim(x→0)[-2x+2xe^(-x^2)]/(32x^3)
=lim(x→0)[-1+e^(-x^2)]/(16x^2) (等价无穷小代换)
=lim(x→0)(-x^2)/(16x^2)
=-1/16

0