对根号(x平方-a平方)/x如何积分?是(x平方-a平方)开平方再除以x,然后求定积分!别弄混淆啦!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 01:20:43
对根号(x平方-a平方)/x如何积分?是(x平方-a平方)开平方再除以x,然后求定积分!别弄混淆啦!
xR1o@+NsƳ/ Uh930$DJ(v fJU*DMH3ϡwwN㐀: 1Ĺ{{e wC8- O!foɇtڏ7 Gg,Nnछ^Ǿi]%8N6WͶ_-FљZ읢NDp! Jp rɄgL :C[HۚT]qLT\Z)msJɿwz ݷ0>=2^bu $}K7( Aa*xWR#OΌQQDk6DTOsìyJNZ"Y#(r4:Lv77NV'{ItCtehPUbeqZUog~LFj$03"16Y^^ܾ~%>RV'|908LB_[J]Qjd]Jy%O:T\

对根号(x平方-a平方)/x如何积分?是(x平方-a平方)开平方再除以x,然后求定积分!别弄混淆啦!
对根号(x平方-a平方)/x如何积分?
是(x平方-a平方)开平方再除以x,然后求定积分!
别弄混淆啦!

对根号(x平方-a平方)/x如何积分?是(x平方-a平方)开平方再除以x,然后求定积分!别弄混淆啦!
令x=asecm
则分子=atanm
dx=a*secmtanmdm
secm=x/a
cosm=a/x
所以m=arccos(a/x)
(tanm)^2=x^2/a^2-1=(x^2-a^2)/a^2
所以tanm=√(x^2-a^2)/a
所以原式=∫(atanm/asecm)a*secmtanmdm
=∫a(tanm)^2dm
=a∫[(secm)^2-1]dm
=a∫(secm)^2dm-a∫dm
=atanm-am+C
=√(x^2-a^2)-a*arccos(a/x)+C

令x=a/sint 去做

x = |a|sect, 0 < t < PI. t不等于PI/2. t = arccos(|a|/x).
dx = |a|sect*tantdt.
S [x^2 - a^2]^(1/2)dx/x
= S |a||tant|*|a|sect*tantdt/[|a|sect]
= |a|S |tant|*tantdt
0 < t < PI/2, x = |a...

全部展开

x = |a|sect, 0 < t < PI. t不等于PI/2. t = arccos(|a|/x).
dx = |a|sect*tantdt.
S [x^2 - a^2]^(1/2)dx/x
= S |a||tant|*|a|sect*tantdt/[|a|sect]
= |a|S |tant|*tantdt
0 < t < PI/2, x = |a|sect > |a| > 0.
S [x^2 - a^2]^(1/2)dx/x
= |a|S |tant|*tantdt = |a| S [tant]^2 dt = |a| S {[sect]^2 - 1}dt
= |a|{tant - t} + C
= |a|{tan[arccos(|a|/x)] - arccos(|a|/x)} + C
PI/2 < t < PI, x = |a|sect < -|a| < 0.
S [x^2 - a^2]^(1/2)dx/x
= |a|S |tant|*tantdt = -|a| S [tant]^2 dt = -|a| S {[sect]^2 - 1}dt
= -|a|{tant - t} + C
= -|a|{tan[arccos(|a|/x)] - arccos(|a|/x)} + C

收起