已知函数f(x)=x²+px+q 满足f(1)=f(2)=0 则f(-1)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:25:59
已知函数f(x)=x²+px+q 满足f(1)=f(2)=0 则f(-1)=
xUN@JU퀝V"ȹHU+CU^r\8@UI!@CIsP>:kW'μٝyowʮogǸzGg|68lA&&+<,rHDX.< {!z4HM)sX'8ydIto*bdVPdYb"^RXPH%a7ϼ/5,ٖjuµmgvew.Pw QѺSZ[wzԃ»7+>) iM©yEk}&S_c<pvT.6@TMGu?+f瞬N" 94XGF:Fu2!\'k] OGSw`L3ri]:Mp\.⭀: q=ǣE.hg07˸p'5Ȇ(P!u[-q^6{\$r~p ? mQ P/IqI PDBJ2^3YĎR/%L ;Nb"mX藪J.*\F!?tN.@ӊ}@BB6̵HOOG%%M:HR8DZ>s"{7UdI?xP ^ MB ~7i

已知函数f(x)=x²+px+q 满足f(1)=f(2)=0 则f(-1)=
已知函数f(x)=x²+px+q 满足f(1)=f(2)=0 则f(-1)=

已知函数f(x)=x²+px+q 满足f(1)=f(2)=0 则f(-1)=
f(1)=0
1²+p+q=0
p+q=-1
f(2)=0
2²+2p+q=0
2p+q=-4
p-1=-4
p=-3
q=-1-p=-1+3=2
f(x)=x²-3x+2
f(-1)=1²+3+2=6
如果本题有什么不明白可以追问,如果满意请点击“选为满意答案”

f(x)=x²+px+q 满足f(1)=f(2)=0
所以x=1,x=2是函数的两个零点
所以由根与系数关系知:
1+2=-p,1×2=q
∴p=-3,q=2
∴f(x)=x²-3x+2
∴f(-1)=1+3+2=6

明教为您解答,
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!...

全部展开

f(x)=x²+px+q 满足f(1)=f(2)=0
所以x=1,x=2是函数的两个零点
所以由根与系数关系知:
1+2=-p,1×2=q
∴p=-3,q=2
∴f(x)=x²-3x+2
∴f(-1)=1+3+2=6

明教为您解答,
如若满意,请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!

收起

f(-1)=6

把x=1 x=2分别代入f(x)
得:1+p+q=0 4+2p+q=0
解得:p=-3 q=2
所以f(x)=x^2-3x+2
把x=-1代入
f(x)=(-1)^2-3(-1)+2=6

首先这个函数可以确定是二次函数。因为F(1)=F(2),可以确定函数的对称轴为X=1.5,则P=-3,带入X=1或2可以求出q=2,那么F(X)=X^2-3X+2,带入X=-1可以求出结果为6

已知函数f(x)=x²+px+q 满足f(1)=f(2)=0 则f(-1)=
最好的办法:
f(1)=1+p+q=0
f(2)=4+2p+q=0
解得p=-3,q=2
f(-1)=1-p+q=6