f(x)=sin(x+7π\4)+cos(x-3π\4) 求fx的最小正周期
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:35:55
x)KӨд-Ө6?c_Qk(<ؔV|V˳9
O7?[̷I*'W~
+IW E&
`H9(AP}p6TقOdt<T6JzAj!Fxz @DBlCi_\g
u0Y$l0m01N &?qQ ֫{3JXt&.
@v|&)!:
jJ vq
f(x)=sin(x+7π\4)+cos(x-3π\4) 求fx的最小正周期
f(x)=sin(x+7π\4)+cos(x-3π\4) 求fx的最小正周期
f(x)=sin(x+7π\4)+cos(x-3π\4) 求fx的最小正周期
f(x)=sin(x+7π\4)+cos(x-3π\4)
=sinxcos7π/4+cosxsin7π/4+cosxcos3π/4+sinxsin3π/4
=sinxcosπ/4-cosxsinπ/4-cosxcosπ/4+sinxsinπ/4
=根号2/2sinx-根号2/2cosx-根号2/2cosx+根号2/2sinx
=根号2sinx-根号2cosx
=2(根号2/2sinx-根号2/2cosx)
=2sin(x-π/4)
T=2π/1=2π
2排
f(x)=sin(x+7π/4)+cos(x-3π/4)
=(1/√2)(sinx-cosx-cosx+sinx)
=2sin(x- π/4),
它的最小正周期是2π。
f(x)=sin(x+7π\4)+cos(x-3π\4)
=sinxcos7π/4+cosxsin7π/4+cosxcos3π/4+sinxsin3π/4
=sinxcosπ/4-cosxsinπ/4-cosxcosπ/4+sinxsinπ/4
=(1/√2)(sinx-cosx-cosx+sinx)
=2sin(x- π/4),
它的最小正周期是2π。