若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是x趋

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:32:04
若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是x趋
x){ѽ4{:Yd%h?ⶵ>_t';d>nS c<Tl m ~9wѳ+^l~d‹f3 hLR";A&֞Qi[i_\g ~|l@[+MT 6S(5B<*wٓ4@bi@$Mkc)+l=

若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是x趋
若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是x趋

若f(x)在(a,+∞)内可导,且lim【f(x)+f(x)的导数】=0下面是x趋于+∞ 证明:limf(x)=0下面是x趋
lim【f(x)+f(x)的导数】=0下面是x趋于+∞
f(x)=Ce^(-x)

lim_{x→+∞}f(x)=lim_{x→+∞}f(x)e^x/e^x
由f(x)e^x的导数为(f(x)+f'(x))e^x,而e^x的导数为e^x;利用罗比达法则,有
lim_{x→+∞}f(x)e^x/e^x=lim_{x→+∞}[(f(x)+f'(x))e^x]/e^x=lim_{x→+∞}f(x)+f'(x)=0
于是lim_{x→+∞}f(x)=0

^