化简:(1)3/2cosx-√3/2sinx(2)√3sinx/2+cosx/2(3)√2/4sin(π/4-x)+√6/4cos(π/4-x)(4)sin347°cos148°+sin77°cos58°(5)sin164°sin224°+sin254°sin314°(6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)(7)sin(α-β)sin(β-γ)-cos(α-β)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 02:32:10
化简:(1)3/2cosx-√3/2sinx(2)√3sinx/2+cosx/2(3)√2/4sin(π/4-x)+√6/4cos(π/4-x)(4)sin347°cos148°+sin77°cos58°(5)sin164°sin224°+sin254°sin314°(6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)(7)sin(α-β)sin(β-γ)-cos(α-β)
x0_Ʋ'Y/RpR*ʡ=.g(I=; !}q6]Qv'n_Χu›wv@@ .U_\mT.a"*jZ/b=D}ZC]<#A_šB)}(;3i<ڱזތ(QZ6߻v|.`.np-SJkh3;1H6ۭ]=uBDSY<ަ+3JA北2:A*.ebOX6.}lo,D1 #*j"02'YH; EhuH^9%'`UAN^Nqi?Ľ. s\T:G/}Zsyd<~w$rEI3%n$~3Mi p$?nQuMxK9l~w] $z

化简:(1)3/2cosx-√3/2sinx(2)√3sinx/2+cosx/2(3)√2/4sin(π/4-x)+√6/4cos(π/4-x)(4)sin347°cos148°+sin77°cos58°(5)sin164°sin224°+sin254°sin314°(6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)(7)sin(α-β)sin(β-γ)-cos(α-β)
化简:(1)3/2cosx-√3/2sinx(2)√3sinx/2+cosx/2(3)√2/4sin(π/4-x)+√6/4cos(π/4-x)
(4)sin347°cos148°+sin77°cos58°(5)sin164°sin224°+sin254°sin314°(6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)(7)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)(8)(tan5π/4+tan5π/12)/(1-tan5π/12)(9)[sin(α+β)-2sinαcosβ]/[2sinαsinβ+cos(α+β)]

化简:(1)3/2cosx-√3/2sinx(2)√3sinx/2+cosx/2(3)√2/4sin(π/4-x)+√6/4cos(π/4-x)(4)sin347°cos148°+sin77°cos58°(5)sin164°sin224°+sin254°sin314°(6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)(7)sin(α-β)sin(β-γ)-cos(α-β)
(1)3/2cosx-√3/2sinx=√3(√3/2cosx-1/2sinx)=√3sin(π/3-x)
(2)√3sinx/2+cosx/2=2(√3/2sinx+1/2cosx)=2sin(x+π/6)
(3)√2/4sin(π/4-x)+√6/4cos(π/4-x)=√2/2[1/2sin(π/4-x)+√3/2cos(π/4-x)]=√2/2sin(7π/12-x)
(4)sin347°cos148°+sin77°cos58°=-sin13°(-cos32°)+cos13°sin32°=sin(32°+13°)=sin45°=√2/2
(5)sin164°sin224°+sin254°sin314°=sin16°(-sin44°)-sin74°(-sin46°)=cos16°cos44°-sin16°sin44°=cos(16°+44°)=cos60°=1/2
(6)sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(γ-β)+cos(β+α)sin(γ-β)=
sin(α+β+γ-β)=sin(α+γ)
(7)sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=sin(α-β)sin(β-γ)-cos(α-β)cos(β-γ)=
-cos(α-β+β-γ)=-cos(α--γ)
(8)(tan5π/4+tan5π/12)/(1-tan5π/12)=(tanπ/4+tan5π/12)/(1-tanπ/4*tan5π/12)=
tan(π/4+5π/12)=tan2π/3=-√3
(9)[sin(α+β)-2sinαcosβ]/[2sinαsinβ+cos(α+β)]=[cosαsinβ-sinαcosβ]/[sinαsinβ+cosαsinβ]
=sin(β-α)/cos(β-α)=tan(β-α)