y=(sinx +根号3)(cosx +根号3)的最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:17:05
xQ?K@* !䢭`_Nܐl"vIoR-_ww/K{iWW :G4Ʌ73l(D:t,\41tZS6- ڗqYDzehgӑ:h^QQ5亥|*uq-q܁PtD#,$}.#w*'-5C=v2Q!N0<*}Qij]T-ꧯ>WDqҩ0=fW8TeaIYCvXm(3@AgHH1VυYTڞY(g7Wy
y=(sinx +根号3)(cosx +根号3)的最小值
y=(sinx +根号3)(cosx +根号3)的最小值
y=(sinx +根号3)(cosx +根号3)的最小值
设:sinx+cosx=t,则:sinxcosx=(t²-1)/2
则:
y=(sinx+√3)(cosx+√3)
y=sinxcosx+√3(sinx+cosx)+3
得:
y=(1/2)(t²-1)+√3t+3
y=(1/2)×[t+√3]²+1
由于t∈[-√2,√2]
则:y的最大值是(1/2)×[√2+√3]²+1=(7/2)+√6
y的最小值是y=(1/2)×[-√2+√3]²+1=(7/2)-√6
y=sinxcosx+3^1/2(sinx+cosx)+3
令t=sinx+cosx
t^2=1+2sinxcosx
sinxcosx=(t^2-1)/2
y=t^2/2+3^1/2t+5/2
y=1/2(t^2+2x3^1/2t+5)
y=1/2((t+3^1/2)^2-3+5)
y=1/2((t+3^1/2)+2)
y=1/2(t+3^1/2)^2+1
t=2^1/2sin(x+45)
-2^1/2<=t<=2^1/2
t=-3^1/2
t=-2^1/2,ymin=7/2-6^1/2