设M=1/(1+√2)+1/(√2+√3)+1/(√3+√4)+…+1/(√2011+√2012),N=1-2+3-4+5-6+…+2011-2012,求N/(M+1)²的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:11:56
设M=1/(1+√2)+1/(√2+√3)+1/(√3+√4)+…+1/(√2011+√2012),N=1-2+3-4+5-6+…+2011-2012,求N/(M+1)²的值
x){nYF@&x e0yCC#M?[C]#mc]mS]3*.HR&?{:| TS64~>i"}[ l<^6zfkقOuE*@ndU?m|m]}`!}R[]=Sg>9ٌ:&>ٽECfxdu^oZc_\g8A

设M=1/(1+√2)+1/(√2+√3)+1/(√3+√4)+…+1/(√2011+√2012),N=1-2+3-4+5-6+…+2011-2012,求N/(M+1)²的值
设M=1/(1+√2)+1/(√2+√3)+1/(√3+√4)+…+1/(√2011+√2012),N=1-2+3-4+5-6+…+2011-2012,
求N/(M+1)²的值

设M=1/(1+√2)+1/(√2+√3)+1/(√3+√4)+…+1/(√2011+√2012),N=1-2+3-4+5-6+…+2011-2012,求N/(M+1)²的值
通分=-1十根号2012,N=-1x2011÷2=-1006
共等于-1006/2012=-0.5.这也是我们老师昨天讲过的,