高数 微分方程 请问里面的特解-1/2cosx是怎么求出来的,要完整过程,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 16:11:14
高数 微分方程 请问里面的特解-1/2cosx是怎么求出来的,要完整过程,
xT[OQ+[[#f۵U-X}0UDJ QQ.`=gOgZ }8;{fv;ߜ©+:@r̮veP,#$zWivOp.,cHœGQxc9$r>U[ *y9?t$[[ۢEV=vĺ3ߞ˴ WCt va#Yz& Y"m,S%q [[jތ?/'W1NUx:!D69F x{;zĞI{4nOCR\pJOs|XRZouGS{s sRCn6~?uM @!EIAɔۄBuԥRP'V=Iܔ,hXnBΩb3d7H:]?W

高数 微分方程 请问里面的特解-1/2cosx是怎么求出来的,要完整过程,
高数 微分方程
请问里面的特解-1/2cosx是怎么求出来的,要完整过程,


高数 微分方程 请问里面的特解-1/2cosx是怎么求出来的,要完整过程,
若求得:y" - p(x)*y' - q(x)*y = 0 的两个线性无关的特u(x),v(x),则 非齐次方程:
y" - p(x)*y' - q(x)*y = t(x)
的通解公式为:
y = C1 * u(x) + C2 * v(x) + ∫ [ u(s)*v(x) - u(x)*v(s) ] / [ u(s)*v ' (x) - v(s) * u ' (x) ] * t(s) ds.
这里的微分方程为:f '' (x) - f(x) = cos x,齐次部分:y '' - y = 0.
特征方程为:x^2 - 1 = 0.x = 1 和 x = -1.
所以,基础解系 u(x) = e^x,v(x) = e^(-x).t(x) = cosx,代入通解公式计算,就能够得到方程的通解为:f(x) = C1 * e^x + C2 * e^(-x) - 1/2 * cosx.
【注:
∫ [ u(s)*v(x) - u(x)*v(s) ] / [ u(s)*v ' (x) - v(s) * u ' (x) ] * t(s) ds.
通解公式中,这个部分计算出来的就是 -1/2 * cos x ,就是特解.

如果你有疑问,欢迎用百度Hi追问我.

若求得:y" - p(x)*y' - q(x)*y = 0 的两个线性无关的特u(x),v(x),则 非齐次方程:
y" - p(x)*y' - q(x)*y = t(x)
的通解公式为:
y = C1 * u(x) + C2 * v(x) + ∫ [ u(s)*v(x) - u(x)*v(...

全部展开

若求得:y" - p(x)*y' - q(x)*y = 0 的两个线性无关的特u(x),v(x),则 非齐次方程:
y" - p(x)*y' - q(x)*y = t(x)
的通解公式为:
y = C1 * u(x) + C2 * v(x) + ∫ [ u(s)*v(x) - u(x)*v(s) ] / [ u(s)*v ' (x) - v(s) * u ' (x) ] * t(s) ds.
这里的微分方程为:f '' (x) - f(x) = cos x,齐次部分:y '' - y = 0.
特征方程为:x^2 - 1 = 0. x = 1 和 x = -1.
所以,基础解系 u(x) = e^x,v(x) = e^(-x). t(x) = cosx,代入通解公式计算,就能够得到方程的通解为:f(x) = C1 * e^x + C2 * e^(-x) - 1/2 * cosx.
【注:
∫ [ u(s)*v(x) - u(x)*v(s) ] / [ u(s)*v ' (x) - v(s) * u ' (x) ] * t(s) ds.
通解公式中,这个部分计算出来的就是 -1/2 * cos x ,就是特解.

如果你有疑问,欢迎用百度Hi追问我.~~

收起