设A为奇数阶矩阵,且|A|=1,A^T=A^-1,试证矩阵(E-A)是不可逆的.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 19:18:31
设A为奇数阶矩阵,且|A|=1,A^T=A^-1,试证矩阵(E-A)是不可逆的.
x){n.m6u۞_rV';88ƅ:X?F}ڿeCY-z6IE4NΆKI-KڂZMt]WM[] P|&Fp6Ax}Z\g0&0

设A为奇数阶矩阵,且|A|=1,A^T=A^-1,试证矩阵(E-A)是不可逆的.
设A为奇数阶矩阵,且|A|=1,A^T=A^-1,试证矩阵(E-A)是不可逆的.

设A为奇数阶矩阵,且|A|=1,A^T=A^-1,试证矩阵(E-A)是不可逆的.
det(E-A)=det(A)*det(E-A)=det(A^T)det(E-A)=det(A^T-E)=-det(E-A^T)=-det(E-A)
移向
2det(E-A)=0
det(E-A)=0
矩阵(E-A)是不可逆的.