设A为m*n矩阵,求证存在一个n阶矩阵B≠0,使AB=0的充要条件是r(A)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:44:27
x){nr_rVg^o|v9+hxcU N:<ٻ/5>mf/pԴI*ҧv6rg34l Og/ ZҥN ӟNe^v//փhXRlN˹^WSx 1?
设A为m*n矩阵,求证存在一个n阶矩阵B≠0,使AB=0的充要条件是r(A)
设A为m*n矩阵,求证存在一个n阶矩阵B≠0,使AB=0的充要条件是r(A)
设A为m*n矩阵,求证存在一个n阶矩阵B≠0,使AB=0的充要条件是r(A)
证明: (=>)
因为AB=0, 所以B的列向量都是AX=0的解.
又因为B≠0, 所以AX=0有非零解.
所以 r(A)
设A为m*n矩阵,求证存在一个n阶矩阵B≠0,使AB=0的充要条件是r(A)
设A为m*n矩阵,求证存在一个n阶矩阵B≠0,使AB=0的充要条件是r(A)
线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
设A为m*n矩阵,并且r(A)=n,又B为n阶矩阵,求证:如果AB=A则B=E
设A是m*n矩阵,r(A)=r,证明:存在秩为n-r的n阶矩阵B,使AB=0
设A为m*n矩阵,B为n*m矩阵,其中n
设A为m*n矩阵,B为n*m矩阵,其中n
设A为m×n矩阵,且r(A)=r<n.求证:存在秩为n-r的n×(n-r)矩阵B,使得AB=O
关于逆矩阵的证明题设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵)
【分块矩阵】 设A,C分别为m,n阶方阵,B为mxn矩阵,M={A B/O C},求证:|M|=|A||C|.
设A为mxn矩阵,B为nxm矩阵,m>n,证明AB不是可逆矩阵?
设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)
设A为M×N矩阵,B为N×M矩阵,则
矩阵A是m乘n阶矩阵,矩阵B是n乘m阶矩阵.若m>n求证AB的行列式为0大哥大姐们帮小弟一个忙吧!线代上的是习题啊
设A为n阶矩阵,并且A≠0.求证:存在一个n阶矩阵B≠0 使AB=0的充分必要条件是detA=0
设A是n阶矩阵,若存在正整数k,使A的k次方为o矩阵,求证矩阵A的特征值为0感激不尽
设A为m*n矩阵,B为n*s矩阵,若AB=O,求证:r(A)+r(B)≤n
设A为n阶可逆矩阵,B为n×m矩阵,证明:秩(AB)=秩(B)