设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0求详解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 15:28:20
xN@_evҤtٗ0.4itò"JELM]_[]M;d<+Jw(Fy$H&P!i4CG$Iܰ07E,0蠤>s_&2qQ?F"ґtUa22
diPAy^(CG֒)fo1.x揮6Yyy3Y(/4Y#g)vf3,,&WhϏ.q_,9kv']UY&iVA;Iy
N[qmO"?PS+ұw^b!
设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0求详解
设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0
求详解
设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0求详解
证明:记F(α) = ∫(α,0)f(x)dx - α∫(1,0)f(x)dx
则 F'(α) = f(α) - ∫(1,0)f(x)dx
从而F'(α)单调不增,又 F'(0) = f(0) - ∫(1,0)f(x)dx ≥ f(0) - ∫(1,0)f(0)dx = 0
F'(1) ≤ 0
因此F'(α)先大于0,然后小于0;也就是说F(α) 先单调增加,然后单调减少.
因此F(α) 在[0,1]上的最小值在端点处取得.
而F(0) = F(1) = 0,
总而知在0
f(x)在(0.1)上连续且单调增,证明∫[0,1]f(x)dx
设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0求详解
设f(x)在[0,a]上连续,在(0,a)内可导,且f(0)=0,f(x)的导数单调增,证当0
一道高数证明题,设函数f(x)在(-∞,+∞)上连续,F(x)=∫(0,x)(x-2t)f(t)dt,试证:若f(x)单调不增,则F(x)单调不减.
设函数y=f(x)在[a,b]上连续且单调,证明其反函数在相应区间上也连续且单调
设函数f(x)在区间[0,+∞]上连续,且f(0)=0,f'(x)递增 ,证明:f(x)/x在(0,+∞)上是单调增函数函数的二阶导不存在
设f(x)在[0,1]上具有二阶连续导数,且|f''(x)|
设f(x)在[0,1]上连续,且f(x)
高等数学问题:设f(x)在[0,1]上连续,且f(x)
设函数f(x)在[0,正无穷)上连续,单调不减且f(0)>=0,试证 F(x)=1/x*∫(0到x)t^n*f(t)dt x>0 0 x=0证明.在[0,正无穷)上连续且单调不减(其中n大于0)
设f(x)在区间[0,1]上连续,且f0)f(1)
设F(x)=(f(x)-f(a))/(x-a),(x>a)其中f(x)在[a,+∞)上连续,f''(x)在(a,+∞)内存在且大于0,求证F(x)在(a,+∞)内单调递增.
设f(x)在[0,1]上连续,且f(t)
设f(x)在[0,a]上二次可微,且xf'(x)-f(x)>0,则f(x)/x 在区间(0,a)内A.单调增加B.单调减少C.有增有减D.不增不减
设y=f(x)在(-∞,+∞)上连续且单调递减,试证:函数F(x)=∫ {0,x}(x-2t)f(t)dt 在(-∞,+∞)单调递
设偶函数y=f(x)在区间(0,+∞)上单调递增,且1
一个函数证明题设f(x)在[0,1]上单调递增且连续,f(0)>0,f(1)<1,试证:存在y∈(0,1),使f(y)=y2
设函数f(x)在闭区间[0,1]上连续,且0