求矩阵a=(1,0,-1;0,1,0;-1,0,1)的特征值 特征向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 12:04:24
求矩阵a=(1,0,-1;0,1,0;-1,0,1)的特征值 特征向量
x){/glM}P@G:@&:jy޹Ƨ { _$S;jQn[0V0P5  |0GPl4@lM->.B$e@D@gÓK]d.ӍJ#l @Oz7H4K3.Db#HyOv2 xټٻ ن:ن:@|몉.#[ p`]FF:Fv1]>3mqN16<;P2IY

求矩阵a=(1,0,-1;0,1,0;-1,0,1)的特征值 特征向量
求矩阵a=(1,0,-1;0,1,0;-1,0,1)的特征值 特征向量

求矩阵a=(1,0,-1;0,1,0;-1,0,1)的特征值 特征向量
|A-λE|=
1-λ 0 -1
0 1-λ 0
-1 0 1-λ
= (1-λ) *
1-λ -1
-1 1-λ
= -λ(1-λ)(2-λ)
所以 A 的特征值为 0,1,2
AX=0 的基础解系为 a1=(1,0,1)^T,所以A的属于特征值0的全部特征向量为 k1a1,k1≠0
(A-E)X=0 的基础解系为 a2=(0,1,0)^T,所以A的属于特征值1的全部特征向量为 k2a2,k2≠0
(A-2E)X=0 的基础解系为 a3=(1,0,-1)^T,所以A的属于特征值2的全部特征向量为 k3a3,k3≠0