若定义在R上的增函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立(1)求f(0)的值(2)若f(4)=5,不等式f(cos^2x+asinx-2)<3对任意的x∈R恒成立,求实数a的取值范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 20:29:06
xRn@HHȖmٻI?WAJťD$MihUmH 7q_*=ۨ qjvfv\kXẎx)65xw fbg\Fgt*,8Lu-}3Ie o;ԙǾ8Ych`H//HK
fUMnه8QGyA0<@61HmwZ{DkIa5JLNG3n}. -bg=O˥ /ouBN9!gy
MkuZ9%y{Ѵvhr
v[ūbA'mjLeoU >^ԒD8'HiSjibR"+%K.e" ^WD~::l|͆prGAF{ԅ44, @jf^ o
若定义在R上的增函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立(1)求f(0)的值(2)若f(4)=5,不等式f(cos^2x+asinx-2)<3对任意的x∈R恒成立,求实数a的取值范围
若定义在R上的增函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立
(1)求f(0)的值(2)若f(4)=5,不等式f(cos^2x+asinx-2)<3对任意的x∈R恒成立,求实数a的取值范围
若定义在R上的增函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立(1)求f(0)的值(2)若f(4)=5,不等式f(cos^2x+asinx-2)<3对任意的x∈R恒成立,求实数a的取值范围
(1)令x1=x2=0得f(0)=f(0)+f(0)-1 ,故f(0)=1
(2) 由恒等式知f(4)=f(2+2)=f(2)+f(2)-1
因f(4)=5,所以f(2)+f(2)-1=5 解得f(2)=3
所以不等式可化为f(cos²x+asinx-2)<f(2)
因为是增函数,故有cos²x+asinx-20在t∈[-1,1]恒成立
只需g(t)的最小值>0
g(t)=(t-a/2)²+3-a²/4 抛物线开口向上,对称轴t=a/2
则分如下三种情况讨论
(1)-1≤a/2≤1即-2≤a≤2时,最小值为g(a/2)=3-a²/4>0即a²0得a
定义在R上的函数y=f(x),若对任意不等实数x1,x2满足[f-f]/[x1-x2]
若定义在R上的函数f(x)满足:若定义在R上的函数f(x)满足:对任意x1,x2属于R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是:1、f(x)为奇函数;2、f(x)为偶函数;3、f(x)+1为奇函数;f(x)+1为偶函数.
证明增减性的定义在R上的函数f(x)对任意实数x1 x2满足f(x1+x2)=f(x1)+f(x2)+2 当x大于0时有f(x)在R上是增函数
若定义在R上的函数fx满足:对任意x1,x2∈R有f(x1+x2)=fx1+fx2+1若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是A.f(x)+1为奇函数B.f(x)+1为偶函数C.f(x)为奇函数D.f(x)
若定义在R上的函数f(x)满足:对任意X1 X2有f(X1+X2)=f(X1)+f(X2)+1若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是(A)f(x)为奇函数 (B)f(x)为偶函数(C) f(x)+1为奇函
高一数学,若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法正确的是高一数学,若定义在R上的函数f(x)满足:对任意x1,x2∈R,有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的
若定义在R上的函数f(X)满足:对任意X1,X2都有f(X1+X2)=f(X1)+f(X2)+1,则f(X)+1为偶函数,为什么不好意思,应该为奇函数
定义在R上的函数y=f(x)若对于任意不等实数x1,x2满足[f(x1)-f(x2)]/(x1-x2)
设f(x)是定义在R上的函数若存在x2>0对于任意x1∈R都有f(x1)<f(x1+x2)成立则函数f(x)在R上单调递增why错了
定义在R上的函数y=f(x),若对任意不等实数x1,x2满足[f(x1)-f(x2)]/(x1-x2)0的解集是什么?
定义在R上的函数F(X)满足:1,存在X1不等于X2定义在R上的函数F(X)满足:1:存在X1不等于X2,使F(X1)不等于F(X2);2:对任意X,Y属于R,都有F(X+Y)=F(X)F(Y)一:求F(0)的值二:若F(1)=A(A>0),求F(4)的值三:证明:对任意X属
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x〉0时,f(x)〉1.(1)求证:f(x1)-1为奇函数(2)求证:f(x)是R上的增函数(3)若f(4)=5,解不等式f(3m的2次方-m-2)〈3
【急】设定义在R上的函数f(x)满足对任意x1x2∈(-∞,0],有f(x1 x2)=若定义在R上的函数f(x)满足对任意x1x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是?A.f (x)为奇函数B.f(x)为偶函数C.f(x)
定义在R上的偶函数f(x),对任意x1,x2属于[0,+无穷大)(x1不等于x2),有f(x2)-f(x1)/x2-x1
定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数X1,X2,总有f(X1+X2)=f(X1)f(X2),且x>0时,0
设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x1+x2)=f(x1)f(x2).若f(0))≠0 f(0)的导数设f(x)是定义在R上的函数,对任意x,∈R,恒有f(x1+x2)=f(x1)f(x2).若f(0))≠0 f(0)的导数为1 证明对任意x,∈R都有f(x)=f(x)的导
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时...(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>0时,0<f(