已知函数f(x)=x^3+ax^2+bx在x=-2/3与x=1处取得极值(1)求a,b的值(2)求f(x)的单调区间及极大值,极小值.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 12:28:59
xRNPM1&4D7w bbK##ją"PN-3g9FтutPHʔ)s[J^4Bˆú4u߄VtU$]{
jzt6hz}q>VF~[Z2=r0 #Z\c6oZ
ǽB"IakE7"6uM<215],:KK|aiM6EǸK
\q{R
ݘ2P*W_I(++j?.A}#cUXBk,f!%jRMfN]9~
ӎʍ=>8x/lӖpprM#qv&y8nh;E{ˢoZNjh
已知函数f(x)=x^3+ax^2+bx在x=-2/3与x=1处取得极值(1)求a,b的值(2)求f(x)的单调区间及极大值,极小值.
已知函数f(x)=x^3+ax^2+bx在x=-2/3与x=1处取得极值(1)求a,b的值(2)求f(x)的单调区间及极大值,极小值.
已知函数f(x)=x^3+ax^2+bx在x=-2/3与x=1处取得极值(1)求a,b的值(2)求f(x)的单调区间及极大值,极小值.
(1) 因为f(x)在x=-2/3 与x=1时都取得极值 所以f'(-2/3)=0 ,f'(1)=0
解得a=1/2 b=-2
所以f'(x)=3x^2-x-2 当x<-2/3或x>1时,f(x)单调递增,反之则递减
(2)令f'(x)=0 x=1,-2/3 ,因为f''(1)>0 所以f(1)是极小值 舍去 f''(-2/3)<0,所以是极大值,f(-2/3)=22/27 -c 又f(-1)=1/2 -c f(2)=2- c
要使原命题恒成立,即 max[f(x)]
已知函数F(x)=ax^3+bx^2+cx(
已知二次函数f(x)=ax^2+bx+c 讨论函数f(x)的奇偶性
已知函数:f(x)=x^3+ax^2+bx+c,过曲线y=f(x)
已知函数f(x) =ax^3 +bx +c sin x +3 ,且f(-2) =2 ,则f(2)
已知函数f(x)=x^5+ax^3+bx-8且f(-2)=10.则f(2)=
已知函数f(x)=x^5+ax^3+bx-8 qie f(-2)=10 那么f(2)等于
已知函数f(x)=ax³-x²+bx+3,且f(2)=5,求f(-2)
已知二次函数f(x)=ax^2+bx+c,若不等式f(x)
已知二次函数f(x)=ax^2-bx+1,(1)若f(x)
已知二次函数f(x)=ax^2+bx+c,且不等式f(x)
已知二次函数f(x)=ax²+bx+c
已知函数f(x)=ax²+bx,若-1
已知函数f(x)=e^x+ax^2+bx.设函数f(x)在点(t,f(t))(0
已知函数f(x)=x^3+ax^2+bx(x≠0)只有一个零点x=3.求函数f(x)的解析式
已知函数f(x)=ax³+bx+5,f(2)=3,则f(-2)=
已知函数f(x)=ax^2+bx中,f(2)=16,f(-3)=21,求a、b
已知函数f(x)=ax^3+bx+2,若f(2)=1则f(-2)值为多少?
已知函数f(x)=ax^2+bx-8,且f(-3)=8,那么f(3)等于?