一直函数f(x)=sin(πx/2+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 06:34:55
一直函数f(x)=sin(πx/2+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是?
x){-O>!MBӶ83O|C}SMKdg-::t^6}6PQ&ec:O;fTV

一直函数f(x)=sin(πx/2+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是?
一直函数f(x)=sin(πx/2+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是?

一直函数f(x)=sin(πx/2+π/5),若对任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值是?
f(x1)≤f(x)≤f(x2)
则f(x1)=-1
f(x2)=1
所以x1和x2最近相差半个周期
T=2π/(π/2)=4
所以|x1-x2|最小=T/2=2