方程组x^3+y^3+z^3=x+y+z且x^2+y^2+z^2=xyz是否存在整数解方程组[TeX]{(x^3+y^3+z^3=x+y+z),(x^2+y^2+z^2=xyz):}[/TeX]是否存在整数解.可以证明上面的不定方程不存在正实数解,但平凡解x=y=z=0与2负1正形式的实数解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 21:39:40
方程组x^3+y^3+z^3=x+y+z且x^2+y^2+z^2=xyz是否存在整数解方程组[TeX]{(x^3+y^3+z^3=x+y+z),(x^2+y^2+z^2=xyz):}[/TeX]是否存在整数解.可以证明上面的不定方程不存在正实数解,但平凡解x=y=z=0与2负1正形式的实数解
xJ@ǟ[C&Mo)<łW)zI"B-ZcI[7BE6M/i6joDٙvBMU}2Im=դ ~Ps"'ʪSˁ-G>j]{%q݋,For.e|4;~DLQЎr]4DW3;&@!ft@6'9S1qt,vo3n"F<lH|^_B0(ҖDJ4넀CAKiHrؚ]!@ ,̆ސ̍ v߷`"g%|J

方程组x^3+y^3+z^3=x+y+z且x^2+y^2+z^2=xyz是否存在整数解方程组[TeX]{(x^3+y^3+z^3=x+y+z),(x^2+y^2+z^2=xyz):}[/TeX]是否存在整数解.可以证明上面的不定方程不存在正实数解,但平凡解x=y=z=0与2负1正形式的实数解
方程组x^3+y^3+z^3=x+y+z且x^2+y^2+z^2=xyz是否存在整数解
方程组[TeX]{(x^3+y^3+z^3=x+y+z),(x^2+y^2+z^2=xyz):}[/TeX]是否存在整数解.可以证明上面的不定方程不存在正实数解,但平凡解x=y=z=0与2负1正形式的实数解是存在的.现在的问题是,除了平凡解外,上面的不定方程是否存在其他的整数解.

方程组x^3+y^3+z^3=x+y+z且x^2+y^2+z^2=xyz是否存在整数解方程组[TeX]{(x^3+y^3+z^3=x+y+z),(x^2+y^2+z^2=xyz):}[/TeX]是否存在整数解.可以证明上面的不定方程不存在正实数解,但平凡解x=y=z=0与2负1正形式的实数解
可以证明,如果方程组有除了(0,0,0)的整数解,那么x,y,z必定有一个值的绝对值大于100!查看原帖>>