已知公差大于0的等差数列{An}的前n项和为Sn,且满足a3a4=117,a2+a5=22,1.求通向公式An.2.若{Bn}为等差数,且Bn=Sn/n+c,求非零常数cBn=Sn/(n+c)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:38:26
已知公差大于0的等差数列{An}的前n项和为Sn,且满足a3a4=117,a2+a5=22,1.求通向公式An.2.若{Bn}为等差数,且Bn=Sn/n+c,求非零常数cBn=Sn/(n+c)
xWnG~uֻΚD6RQic_PABH%)qZ()*)!8[.&tgm_axW;i?)>ۻRyzp ݙfwA uo Fx]9ΕOMGiֱÃMH,O3ڽ;w.օ"fXPzum0ˊc>_vU7wsj\X(K$D'X:9*׽A{W׍Y 1Hn<#{k5އݽ|y?8鶪՝] N';|eD`K{"`@fymW|`(f| JF=AD#I7.DzAQ)MRڠ"v_:_uW泽Z/: JW#RK)m>5pu$Ct~@'r>_g 0TA2)R0"tÚY2$|7l_wZ@ #moЩ) HClHn(xH)Jک톀t"1폏PZjxwq /tVIX Ҹ%=T#tR.>7BU}?'* F H6S: (@kVy5P"P qLCb ?8q0E&#gt46Ib|ʪ)x+H}8 [1]L'Eه7ѵԏ܄JQGi8#k}sɹ2qMAK0)啡#K_z=f'CsC_MPZFL.eEœ'#e,Qhzd!L (T]&JF(B[p^E$Uq#QLRZ޻i'~HwMV_.» )\BT^\4 rUt&<Wy EA2]S݄ŸbY]PixYt:.WFp2?z '502@"tY

已知公差大于0的等差数列{An}的前n项和为Sn,且满足a3a4=117,a2+a5=22,1.求通向公式An.2.若{Bn}为等差数,且Bn=Sn/n+c,求非零常数cBn=Sn/(n+c)
已知公差大于0的等差数列{An}的前n项和为Sn,且满足a3a4=117,a2+a5=22,1.求通向公式An.2.若{Bn}为等差数,且Bn=Sn/n+c,求非零常数c
Bn=Sn/(n+c)

已知公差大于0的等差数列{An}的前n项和为Sn,且满足a3a4=117,a2+a5=22,1.求通向公式An.2.若{Bn}为等差数,且Bn=Sn/n+c,求非零常数cBn=Sn/(n+c)
通项公式A(n) = 4n - 3
C = - 1/2
这两2个答案是对的
但是,求非零常数c的计算过程可以简略一些,明天再来吧补充吧.
1、{An}为公差大于0的等差数列,则a(n) = a1 + (n-1)d
a(3)*a(4) = (a1 + 2d)(a1 + 3d) = 117
a(2) + a(5) = (a1 + d) + (a1 + 4d) = 22
求得;a1 = 21 d = - 4.(该解不合理,舍去)
或者 a1 = 1 d = 4 .(唯一解)
故 通项公式 A(n) = 1 + 4 (n - 1) = 4n - 3
前n项和为 Sn=n(2n-1)
2、若{Bn}为等差数列,且Bn=Sn/(n + C),[ 注:题目应该是Sn 除以( n + C)之和 ]
因为{Bn}为等差数列,则 B(n) =n(2n-1)/(n + C),
故 B(1) =1*(2*1-1)/(1 + C) =1/(1 + C) ..①
B(2) =2*(2*2-1)/(2 + C) =6/(2 + C).②
B(3) =3*(2*3-1)/(3 + C) =15/(3 + C) .③
根据等差数列性质:
B(2)-B(1) =B(3) -B(2) 即2B(2)=B(1) +B(3)
①、②、③代入上式得
12/(2 + C) =1/(1 + C) =15/(3 + C)
整理后得:4C^2+2C=0
解得 C=0 (舍去)
C=-1/2 (唯一解)
通项公式 Bn=Sn/(n + C )=n(2n-1)/(n + C )=n(2n-1)/(n -1/2 )=2n
{Bn}为等差数列:2、4、6、8、10.自然偶数.

公差大于0的等差数列{An}
则a(n) = a1 + (n-1)d
a(3)a(4) = (a1 + 2d)(a1 + 3d) = 117 ①
a(2) + a(5) = (a1 + d) + (a1 + 4d) = 22 ②
求得;a1 = 21 d = - 4(舍去)
或者 a1 = 1 ...

全部展开

公差大于0的等差数列{An}
则a(n) = a1 + (n-1)d
a(3)a(4) = (a1 + 2d)(a1 + 3d) = 117 ①
a(2) + a(5) = (a1 + d) + (a1 + 4d) = 22 ②
求得;a1 = 21 d = - 4(舍去)
或者 a1 = 1 d = 4 ----------这就是唯一解
1. 通项公式A(n) = 1 + 4 (n - 1) = 4n - 3
2. 若{Bn}为等差数列,且Bn=Sn/n + C,求非零常数C
若{Bn}为等差数列,则 B(n) - B(n - 1) = 常数
B(n+1) - B(n)
= [S(n+1) / (n + 1+ C)] - [S(n)/(n + C)]
= [S(n) + a(n+1)] / (n + 1+ C)] - [S(n)/(n + C)]
= ....略
= [2n² + 2(2C+1)n + C] / [(n + 1+ C)(n + C)]
= [2n² + 2(2C+1)n + C] / [n² + (2C+1)n + C² + 1]
C = 2(C² + C)
求得 C = - 1/2 或者 0 (舍去)
补充:
S(n) = ∑A(n) = ∑(4n - 3) = 4 ∑n - ∑3 = 4*n(n+1) / 2 - 3n = n(2n - 1)
B(n) = S(n) / n + C = 2n - 1 + C
B(n - 1) = 2(n-1) - 1 + C = 2n - 3 +C

收起

1, a2+a5=22=a3+a4
a3a4=117
a3=9 a4=13 (d>0)
d=4
An=4n-3
Sn=2n^2+3n
2, Bn=2n+3+c
Bn-Bn-1=2
c可以为任意,是不是哪错了?

(1)a3+a4=a2+a5=22又a3a4=117又d>0所以a3=9,a4=13,所以d=4,An=4n-3
(2)Sn=n(4n-2)/2所以Bn=(4n-2)/2+c=2n+c-1又Bn等差Bn-B(n-1)=2n+c-1-2n+2-c+1=2
c为非零常数

1.
a3a4=117
a2+a5=a3+a4=22
公差大于0=>a4>a3
解得a3=9,a4=13
所以a1=1,d=4,an=4n-3
2.Sn=(1+4n-3)n/2=2n^2-n
Bn=Sn/n+c=2n-1+c
{Bn}为等差数列,Bn-B(N-1)=2 c为任意实数
若是Bn=Sn/(n+c)=(2n-1)n/(n+c)
{Bn}为等差数列,c=-1/2

a2+a4=2*a3=8
a3=4,a4=3
因此a1=6,d=-1
通项为an=6-(n-1)=7-n

-1/2

(1)an为等差数列,a3•a4=117,a2+a5=22
又a2+a5=a3+a4=22
∴a3,a4是方程x2-22x+117=0的两个根,d>0
∴a3=9,a4=13
∴ a1+2d=9 a1+3d=13 ∴d=4,a1=1
∴an=1+(n-1)×4=4n-3
(2)由(1)知,sn=n+n(n-1)×4 2 =2n2-n

全部展开

(1)an为等差数列,a3•a4=117,a2+a5=22
又a2+a5=a3+a4=22
∴a3,a4是方程x2-22x+117=0的两个根,d>0
∴a3=9,a4=13
∴ a1+2d=9 a1+3d=13 ∴d=4,a1=1
∴an=1+(n-1)×4=4n-3
(2)由(1)知,sn=n+n(n-1)×4 2 =2n2-n
∵bn=sn n+c =2n2-n c+n
∴b1=1 1+c ,b2=6 2+c ,b3=15 3+c ,
∵bn是等差数列,∴2b2=b1+b3,∴2c2+c=0,
∴c=-1 2 (c=0舍去)

收起

已知等差数列an中,|a5 | = | a9 |,公差d大于0已知等差数列an中,|a5 | = | a9 |,公差d大于0,则使得前n项和Sn取得最小值的正整数n的值是 已知等差数列an,公差大于0,a1^2=(a11)^2则数列an的前n项和Sn取得最大值时的项数n是 已知数列An.是首项a1=1,公差d大于0的等差数列,且2a2,a10,5a5,成等差数列,数列An,前n项和为Sn 求An 已知等差数列an的首项a1>0,公差d>0,前n项和为Sn已知等差数列an的首项a1>0,公差d>0,前n项和为Sn,设m.n.p属于N*,且m+n=2p 求证(1)Sn+Sm大于等于2Sp(2)Sn*Sm≤(Sp)^2 已知公差不为0的等差数列{An}的首项A1=1,前n项和为Sn,若数列{Sn/An}是等差数列,求An? 已知等差数列{an}公差为d(d≠0),前n项和为Sn,Xn表示{an}前n项的平均数,且数列{Xn}补充如下:已知等差数列{an}公差为d(d≠0),前n项和为Sn,Xn表示{an}前n项的平均数,且数列{Xn}的前n项和为Tn,且数 已知{an}是公差大于0的等差数列,{bn}是等比数列,且b1=a1*2,b2=a2*2,b3=a3*2,求{an}的前n项和 已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和, 已知{An}为公差不等于0的等差数列,lim=An/n=2,求公差? 设{an}为公差大于0的等差数列,Sn为数列{an}的前n项和,已知S4=24,a2a3=35(1)求数列{an}的通项公式an,(2)若bn=1/an*an+1.求{bn}的前n项和Tn. 已知等差数列an的公差为d,前n项和Sn=-n^2,则通项公式为 设等差数列{an}的前n项和为Sn,已知a3=12,S12大于0,S13小于0,求公差d的取值范围.非常非常的感谢!) 已知公差大于零的等差数列中,a3a7=-16,a4+a6=6,求前n项和 已知公差不为0的等差数列{an}中,a1、a3、a4成等比数列,Sn是{an}的前n项和,则(S3-S2)/(S5-S3)=? 已知{an}是公差不为0的等差数列,a1=1,且a1,a3,a9成等比数列,求数列{2^an}的前n项和Sn 已知an是公差不为0的等差数列 A1=2 且a3^2=a1a6.则an的前n项和Sn=? 已知公差大于零的等差数列{an}的前n项和Sn,且满足a1*a6=21,S6=66,求数列{an}的通项公式an. 已知等差数列{an}的公差大于0,且a3 a5是方程x^2-14x+45=0的两根,数列{bn}的前n项和为Sn,且Sn=1-bn/2(n属于N*)求数列{an) {bn}的通项公式若cn=an乘bn,求数列{cn}的前n项和Tn