求f(x,y)=(x+y^2+2y)*e^2x的极值点和最值点.高数,多元函数求导!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 15:36:03
求f(x,y)=(x+y^2+2y)*e^2x的极值点和最值点.高数,多元函数求导!
xRJ@IM;tI~D,(f\aj@|hŢ`뮏_736 7sa.,Z& hѰA2@Df6}4dWu.zk7Y*ev>_b=Т}plQXPQg;`j=aj[4slc a]bXeCD) b8;@ҌJŵT/8(v $0A"M=,p&P]ݤ'?941J@IĎ?BR009+Q-^+AX By.L@߃FO/UZ`$ϼ7ޮ0[Bh5/2'{7/O.j['#W%?>rԘ>tô ΡY

求f(x,y)=(x+y^2+2y)*e^2x的极值点和最值点.高数,多元函数求导!
求f(x,y)=(x+y^2+2y)*e^2x的极值点和最值点.
高数,多元函数求导!

求f(x,y)=(x+y^2+2y)*e^2x的极值点和最值点.高数,多元函数求导!
解;
先求偏导数:
f(x,y)=(x+y^2+2y)e^(2x)
fx(x,y)=e^(2x)+2(x+y^2+2y)e^(2x)
fy(x,y)=(2y+2)e^(2x)
令fx(x,y)=0,fy(x,y)=0
1+2(x+y^2+2y)=0
2y+2=0
y=-1
x=1/2
fxx(x,y)=[e^(2x)(1+2x+2y^2+4y)]x
=2e^(2x)+2(1+2x+2y^2+4y)e^(2x)|(x=1/2,y=-1)
=2e>0
fxy(x,y)=[e^(2x)(1+2x+2y^2+4y)]y
=e^(2x)(4y+4)
=0
fyy(x,y)=[(2y+2)e^(2x)]y
=2e^(2x)=2e>0
fxxfyy-f^2xy>0
所以
f(x,y)在点(1/2,-1)取得极小值是:
-e/2
因为函数只有在该点是极值点,
所以也是最值点.
所以所求的
极值点和最值点都是:
x=1/2,y=-1

似乎题目不全,应该有 y=g(x)