求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:25:34
求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
xJA_e@.av}bslM,¥ ҤJJ"[8zV?_l^a;۬A؆f+=2fLd>Y9b v"PZ#*U6?ִrp'ssu-~TǤ6a6@+ fr)^5M44iQ_xA3bk;*BǢ%ArBtuO^T5.%samj

求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)

求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
0 < xⁿ/(1 + x) < xⁿ
0 < ∫(0→1) xⁿ/(1 + x) dx < ∫(0→1) xⁿ dx = xⁿ⁺¹/(n + 1) |(0→1) = 1/(n + 1)
∵lim(n→∞) 1/(n + 1) = 0
∴lim(n→∞) ∫(0→1) xⁿ/(1 + x) dx = 0
0 ≤ |∫(n→n + k) (sinx)/x dx| ≤ ∫(n→n + k) |sinx|/|x| dx ≤ ∫(n→n + k) 1/n dx = k/n
∵lim(n→∞) k/n = 0
∴lim(n→∞) ∫(n→n + k) (sinx)/x dx = 0