求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:25:34
xJA_e@.av}bslM,¥ҤJJ"[8zV?_l^a;۬A؆f+=2fLd>Y9bv"PZ#*U6?ִrp'ssu-~TǤ6a6@+ fr)^5M44iQ_xA3bk;*BǢ%ArBtuO^T5 .%samj
求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
0 < xⁿ/(1 + x) < xⁿ
0 < ∫(0→1) xⁿ/(1 + x) dx < ∫(0→1) xⁿ dx = xⁿ⁺¹/(n + 1) |(0→1) = 1/(n + 1)
∵lim(n→∞) 1/(n + 1) = 0
∴lim(n→∞) ∫(0→1) xⁿ/(1 + x) dx = 0
0 ≤ |∫(n→n + k) (sinx)/x dx| ≤ ∫(n→n + k) |sinx|/|x| dx ≤ ∫(n→n + k) 1/n dx = k/n
∵lim(n→∞) k/n = 0
∴lim(n→∞) ∫(n→n + k) (sinx)/x dx = 0
求极限 lim(n->∞) (n!/n^e)^1/n
求极限n~∞,lim(n+1)/2n
求 lim (n→+∞) n^( 1/n)的极限
求极限(1)lim(n->∞)∫(0,1)x^n/(1+x)dx (2)lim(n->∞)∫(n+k,n)sinx/xdx (k>0)
求极限lim 2/(3^n-1)
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
求极限lim(n→∞)(a^n+(-b)^n)/(a^n+1+(-b)^n+1)
求极限lim(n->∞){n*[n^(1/n)-1]}/ln(n)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
求极限lim(n→∞)(1/n²+2/n²+...+n/n²)
求极限lim(n+1/n+3)^n如题
求极限Lim((n-x)/(n+2))^(n+1)
lim (1+2/n)^n+4 n-->无穷大 求极限
求极限,lim(x->0) (1-2sinx)^(3/x)lim(n->+∞) (n!-4^n) / (6+ln(n)+n^2)
求极限lim(-2)^n+3^n/(-2)^[n+1]+3^[n+1] (x→∞)
lim(1/n+2^1/n)^n n→∞求详解!高数极限
求极限lim(n→∞)(3n^2-n+1)/(2+n^2)?