设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R) 0时,f设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R)1.当a=0时,求函数f(x)在点P(e,f(e))处的切线 2对任意的x属于[1,正无穷大)函数f(x)大于等于0恒成立,求实数a的取值得

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:40:40
设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R) 0时,f设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R)1.当a=0时,求函数f(x)在点P(e,f(e))处的切线 2对任意的x属于[1,正无穷大)函数f(x)大于等于0恒成立,求实数a的取值得
xSj@CRhϮteJibL`8qIM`B4o'!m9qV\X4^s=Hc5ŗ31L-yjNgLG9K'e,~op*+Z?5<?[T̷r55NEnV[T@TPc[#~N(u/Ojp͊ ~GjZ +n4y-Gcg#+Sa\_[Qʛ mx30Yj2LI?uҁFbASԨ-׫CMA*=IVM$`AjE'WbPt ,,ٌ6~÷v}_a亁7 mc娶(1vlb:|J"' i0M/m0B(F g4ܯq8 =izo 1/*<ߖ7@!<,L)ͨj31rŵ

设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R) 0时,f设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R)1.当a=0时,求函数f(x)在点P(e,f(e))处的切线 2对任意的x属于[1,正无穷大)函数f(x)大于等于0恒成立,求实数a的取值得
设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R) 0时,f
设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R)
1.当a=0时,求函数f(x)在点P(e,f(e))处的切线 2对任意的x属于[1,正无穷大)函数f(x)大于等于0恒成立,求实数a的取值得范围

设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R) 0时,f设函数f(x)=ax²-xlnx-(2a-1)x+a-1(a属于R)1.当a=0时,求函数f(x)在点P(e,f(e))处的切线 2对任意的x属于[1,正无穷大)函数f(x)大于等于0恒成立,求实数a的取值得
第1问:a=0时,f(X)=-x Inx+x-1,所以f'(X)=-InX,
所以在点P(e,f(e))处的切线斜率k=-Ine=-1,f(e)=-1
所以切线过点(e,-1)
所以切线方程为y+1=(x-e)(-1)
为y=-x+e-1
第二问:因为对任意X∈[1,∞),f(X)≥0恒成立,
所以f'(X)=2ax-2a-Inx,
所以[f'(x)]'=2a-1/x=(2ax-1)/x,
因为x∈[1,∞),f'(1)=0
所以只要[f'(x)]'≥0,则f'(X)≥f'(1)=0,则f'(x)恒递增,则f(x)≥f(1)=0
所以只要2ax-1≥0,所以a≥1/2
即a的取值范围为a≥1/2

因为对任意X∈[1,∞),f(X)≥0恒成立,
所以f'(X)=2ax-2a-Inx,
所以[f'(x)]'=2a-1/x=(2ax-1)/x,
因为x∈[1,∞),f'(1)=0
所以只要[f'(x)]'≥0,则f'(X)≥f'(1)=0,则f'(x)恒递增,则f(x)≥f(1)=0
所以只要2ax-1≥0,所以a≥1/2
即a的取值范围为a≥1/2