求证sin^6A+cos^6A=1-3sin^2Acos^A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:42:38
求证sin^6A+cos^6A=1-3sin^2Acos^A
x){̼83Gb ekk 0rmQ_`gCy 4 `&k8"lQ䴍%uQ`͎3t O @.cm

求证sin^6A+cos^6A=1-3sin^2Acos^A
求证sin^6A+cos^6A=1-3sin^2Acos^A

求证sin^6A+cos^6A=1-3sin^2Acos^A
sin^6A+cos^6A=(sin^2A+cos^2A)(sin^4A+cos^4A-sin^2Acos^2A)=sin^4A+cos^4A+2sin^2Acos^2A-32sin^2Acos^2A
=(sin^2A+cos^2A)^2-3sin^2Acos^A
=1-3sin^2Acos^A