线性代数题设向量α=(a1,a2,a3) β=(b1,b2,b3) α^Tβ=0 A=αβ^T设向量α=(a1,a2,a3) β=(b1,b2,b3) a1!=0 b1!=0 α^Tβ=0 A=αβ^T (1)求A^2(2)矩阵A的特征值和特征向量求您讲的细一点 最好一步步来 学的不太好
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:23:22
xRAn@ʰUG8 kK3@l
mqDH*jJ(&IEKȉ]s_^
MCj$ܚ9?>W!^E^!LL4 EBUb5(#7ZU |UT,%gHIw=f]o@*LӫcJ:K?X̹_: vRb
rgu8#L0ws7|=D
线性代数题设向量α=(a1,a2,a3) β=(b1,b2,b3) α^Tβ=0 A=αβ^T设向量α=(a1,a2,a3) β=(b1,b2,b3) a1!=0 b1!=0 α^Tβ=0 A=αβ^T (1)求A^2(2)矩阵A的特征值和特征向量求您讲的细一点 最好一步步来 学的不太好
线性代数题设向量α=(a1,a2,a3) β=(b1,b2,b3) α^Tβ=0 A=αβ^T
设向量α=(a1,a2,a3) β=(b1,b2,b3) a1!=0 b1!=0 α^Tβ=0 A=αβ^T
(1)求A^2
(2)矩阵A的特征值和特征向量
求您讲的细一点 最好一步步来 学的不太好
线性代数题设向量α=(a1,a2,a3) β=(b1,b2,b3) α^Tβ=0 A=αβ^T设向量α=(a1,a2,a3) β=(b1,b2,b3) a1!=0 b1!=0 α^Tβ=0 A=αβ^T (1)求A^2(2)矩阵A的特征值和特征向量求您讲的细一点 最好一步步来 学的不太好
1) A^2 = ab^T ab^T
因为a^Tb=a1b1+a2b2+a3b3 = b^Ta =0
所以A^2=a 0 b^T
所以A^2为0向量
2)A
a1b1 a1b2 a1b3
a2b1 a2b2 a2b3
a3b1 a3b2 a3b3
|A-λE|=0
直接求行列式,常数项、λ一次项全都消掉;
利用a1b1+a2b2+a3b3=0 λ二次项也消掉;
最后λ^3=0,特征值全0
Ax = 0
因为A各行成比例,所以秩为1
最后特征向量表达式:x1=-b2/b1x2-b3/b1x3 (b1!=0)
求通解就得到特征向量了
线性代数证明题求助 设向量组a1,a2,a3线性无关,证明:a1+a2,a2-a3,a1-2a2+a3也线性无关.
线性代数 、设 a1,a2,a3均为三维列向量,且|a1 a2 a3|=1 ,那么|a3 a2 a1-2a2|=
线性代数 设向量组a1,a2,a3线性无关,证明向量组B1=a1+a2-2a3,B2=a1-a2-a3...线性代数 设向量组a1,a2,a3线性无关,证明向量组B1=a1+a2-2a3,B2=a1-a2-a3,B3=a1+a3线性无关
线性代数证明题设向量组a1,a2,a3线性无关,证明向量组a1+a2,a2+a3,a3+a4也线性无关!
线性代数 、设 a1,a2,a3均为三维列向量,且|a1 a2 a3|=1 ,那么|a1+2a3 2a2 a3|=?线性代数 、设 a1,a2,a3均为三维列向量,且|a1 a2 a3|=1 那么|a1+2a3 2a2 a3|=?
线性代数 设向量组a1a2 a3线性无关 证明向量组a1-a2 a2-a3 a3-a1线性相关
线性代数证明线性相关题设n维向量a1,a2,a3 线性相关,a2,a3,a4 线性无关,试证明a1 可以由a2,a3 线性表示.
线性代数证明题:设向量组a1 a2 a3 a4 两两正交 证 向量组a1 a2 a3 a4线性相关
向量租的秩 设向量租a1,a2,a3线性代数,而向量租a2,a3,a4线性无关,则向量组a1,a2向量租的秩 设向量租a1,a2,a3线性代数,而向量租a2,a3,a4线性无关,则向量组a1,a2,a3的最大线性代数无关组的是
线性代数向量证明线性无关设a1,a2,a3线性无关,求证:a1+a2,a2+a3,a3+a1线性无关;过程额
线性代数.设向量组a1,a2,a3线性无关,求a1-a2,a2-a3,a3-a1的一个最大无关组
线性代数练习题2(需详细步骤)设向量组a1,a2,a3线性无关,求证a1+a2,a2+a3,a3+a1线性无关.
线性代数题设向量α=(a1,a2,a3) β=(b1,b2,b3) α^Tβ=0 A=αβ^T设向量α=(a1,a2,a3) β=(b1,b2,b3) a1!=0 b1!=0 α^Tβ=0 A=αβ^T (1)求A^2(2)矩阵A的特征值和特征向量
线性代数简单题设b1=a1+a2,b2=a2+a3,b3=a3+a4,b4=a4+a1证明向量组b1,b2,b3,b4线性相关
线性代数,证明线性相关设b1=a1 +2a2,b2=a2+2a3,b3=a3+2a1,b4=a1+a2+a3,证明向量组b1,b2 ,b3,b4线性相关.
刘老师,我想问一个线性代数的题已知b1=a1+a2,b2=a2+a3,b3=a3+a1,求证向量组a1,a2,a3和向量组b1,b2,b3有相同的线性关系
设a1,a2,a3均为三维向量,3阶方阵A=(a1,a2,a3),则|a1-a2,a3-a2,a3-a1|=
线性代数 若向量组a1 a2 a3 线性无关,那么R(a1,a2,a3)=3 为什么?