任取几个自然数,必有2个数的差是8的倍数?要列式说明里有

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 11:41:27
任取几个自然数,必有2个数的差是8的倍数?要列式说明里有
xVn@ JFB?[(j c&%)%(Gxf/Gi+uSuqG؞s;ChkCv$OtL[BqZJ{OF1F zД/Yf%BRyS5=zv>F1RY ru;vHa^w\~+UrV/#X8O6(pJs Tfx-H z1V;d=5iX(c/`I%HGya>$^3 M9Qo|46l7IhopC2xOuM3  ,IhZֻ_'1ƥ= o GI#MSd^q|0?,AZ-Q%ĢViV#1WYnYۦsas N_IKpctMԐ42Ii2tɤgZ Cs4)M$Յo-b;GIo;6BzHKU[xAR{gc}]$ơ#03ˣTa@ט0螳MAgIXG @C̜Gߌ$#7f@c5$ /R٦%q%>M\ $X+.W*i퓞j Zv!0w4ZYTy~Qyr~v/ m`8 ;B):N>}Edq tּiϝ$^_DglNs5Ͼ '=,*&+.8=5Zto#?+

任取几个自然数,必有2个数的差是8的倍数?要列式说明里有
任取几个自然数,必有2个数的差是8的倍数?
要列式说明里有

任取几个自然数,必有2个数的差是8的倍数?要列式说明里有
任取9个数,必有两个数的差是8的倍数
因为任取1个数,必是8k1,8k2+1,8k3+2,8k4+3,8k5+4,8k6+5,8k7+6,8k8+7中的1个
第9个数,也必是8k1',8k2'+1,8k3'+2,8k4'+3,8k5'+4,8k6'+5,8k7'+6,8k8'+7中的1个
因此必然存在2个数的差是8的倍数

被8除的余数分别为0,1,2,3,4,5,6,7八种情况,而取8+1=9个自然数时,肯定有两个自然数被8除的余数是相同的,因此这两个数的差也一定能被8整除,
所以任取9个自然数,必有两个数的差是8的倍数。

1、一个自然数除以8的余数可能是:0、1、2、3、4、5、6、7,把这8种情况看做8个抽屉,要保证至少有两个数的差是8的倍数,就要保证至少有1个抽屉里有两个数,根据抽屉原理,要取9个不相同的自然数,才能保证至少有两个数的差是9的倍数。

9个。
因为自然数按被8除的余数情况可以分成8类:
分别是余0~7的。
根据抽屉原理,任取9个自然数,至少有2个会分在同一类,
不妨设这两个数都分在了被8除余k的类中
即A=8m+k,B=8n+k
这样这两个数的差:A-B=8(m-n)
就是8的倍数了。
9个已经是最少的了,不能再少了。
如果只取8个数,不巧每类各取一个,

全部展开

9个。
因为自然数按被8除的余数情况可以分成8类:
分别是余0~7的。
根据抽屉原理,任取9个自然数,至少有2个会分在同一类,
不妨设这两个数都分在了被8除余k的类中
即A=8m+k,B=8n+k
这样这两个数的差:A-B=8(m-n)
就是8的倍数了。
9个已经是最少的了,不能再少了。
如果只取8个数,不巧每类各取一个,
例如取出的数是:1,2,3,4,5,6,7,8,
任意两两相减的差都不会是8的倍数。
因此最少任取9个自然数,必有2个数的差是8的倍数。
当然任取N(N>9)个自然数,都会使得必有2个数的差是8的倍数的。
所以答案不唯一。

收起

取8个自然数,必有两个数的差是7的倍数。分析与解答 在与整除有关的问题任取7个自然数,被7除的余数分别为0,1,2,3,4,5,6七种情况,而

任取几个自然数,必有2个数的差是8的倍数?要列式说明里有 任意取多少个自然数,其中必有2个数的差是3的倍数 在任取的7 个自然数中,必有( )个数的差是6的倍数 从5个整数中,一定有3个的和是3的倍数,为什么?从1到50的自然数中,任取27个数,必有2个数的和是52,为什么?任取多少自然数 ,保证至少2个自然数的差是7的倍数? 要任意取几个不相同的自然数,才能保证至少有两个数的差是5的倍数? 任取5个自然数,一定有两个数差是4的倍数, 至少取几个自然数才能保证它们当中一定有两个数的差是5的倍数 任取5个非零的自然数,一定有2个数的差是4的倍数.为什么? 证明:任取8个自然数,必有两个数的差是7的倍数. 1.证明:任取8个自然数,必有两个数的差是7的倍数. 任意取几个不同的自然数,才能保证至少有两个数的差是8的倍数?算式及答案,好的给20追加 从自然数中任意取6个数,其中至少有2个数的差是5的倍数.为什么? 至少取几个自然数,才能保证有4个数,它们当中任意两个数的差都是3的倍数 任取11个自然数,那么其中至少有两个数的差是10的倍数, 任取11个自然数,那么其中至少有两个数的差是10的倍数. 任取4个不同的自然数,必有两个数的差是3的倍数,为什么? 从自然数中任意取6个数,总有两个自然数的差是5的倍数,为什么? 任取4个非零的自然数至少有二个数一定是3的倍数请说明道理任取4个非零的自然数至少有二个数 他们的差一定是3的倍数