讨论函数f(x)=3x/(x^2+1)的单调性,并加以证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 07:32:16
讨论函数f(x)=3x/(x^2+1)的单调性,并加以证明
xN@_emڥu/B4Ge5h(bLBD" -'_-%1z?ӿ, c٘f ; gmߡvvs${W7{Cս`ޯzg,"$;D5!AKNZT'X:veV^ϐQa*xyB]SD;{|*34׭,|.('j jlo*UJEKvkyk7א> |aɩT*>]'z"rh0Wh,^6Ѩ1oHE")uC&)lRc-Wq?V?||?uW

讨论函数f(x)=3x/(x^2+1)的单调性,并加以证明
讨论函数f(x)=3x/(x^2+1)的单调性,并加以证明

讨论函数f(x)=3x/(x^2+1)的单调性,并加以证明
当x=0是 f(0)=0
当x0时
f(x)=3/(x+1/x)
研究下 x+1/x的 单调区间 知 在-1

讨论函数f(x)=3x/(x^2+1)的单调性,并加以证明
x2>x1>0
f(x1)-f(x2)=3x1/(x1^2+1) -3x2/(x2^2+1)
=[3x1(x2^2+1)-3x2(x1^2+1)]/(x1^2+1)(x2^2+1)
=(3x1x2^2+3x1-3x2x1^2-3x2)/(x1^2+1)(x2^2+1)
=[3x1x2(x2-x1)+...

全部展开

讨论函数f(x)=3x/(x^2+1)的单调性,并加以证明
x2>x1>0
f(x1)-f(x2)=3x1/(x1^2+1) -3x2/(x2^2+1)
=[3x1(x2^2+1)-3x2(x1^2+1)]/(x1^2+1)(x2^2+1)
=(3x1x2^2+3x1-3x2x1^2-3x2)/(x1^2+1)(x2^2+1)
=[3x1x2(x2-x1)+3(x1-x2)]/(x1^2+1)(x2^2+1)
=[3x1x2(x2-x1)-3(x2-x1)]/(x1^2+1)(x2^2+1)
= [3(x1x2-1)(x2-x1)]/(x1^2+1)(x2^2+1)
x2-x1>0, x1x2-x1^2>0
所以f(x2)-f(x1)<0,单调递减

收起