设函数f(x)=1/3X3+aX2+5X+6在区间[1,3]上是单调函数,求实数a的取值范围.求详解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:40:32
设函数f(x)=1/3X3+aX2+5X+6在区间[1,3]上是单调函数,求实数a的取值范围.求详解
xSMO@+&&a-MDZf^zbB+  bb(-ԿlwTzv͛X*v&83vJgg ѳJ"_pn8=k$ @sKS]N"eV…2-70 nm?Nθ.ɥ3dmoW#} M +Pi:nT/bM1I[mo%;EǸf~Iq} FUCD!pmq@*' Rq(Ƌֹ

设函数f(x)=1/3X3+aX2+5X+6在区间[1,3]上是单调函数,求实数a的取值范围.求详解
设函数f(x)=1/3X3+aX2+5X+6在区间[1,3]上是单调函数,求实数a的取值范围.求详解

设函数f(x)=1/3X3+aX2+5X+6在区间[1,3]上是单调函数,求实数a的取值范围.求详解
f'(x)=x²+2ax+5
∵f(3)在(1,3)上为单调函数,∴f'(x)≤0或f’(x)≥0在(1,3)上恒成立.
令f'(x)=0即x²+2ax+5)=0 则a=-(x²+5)/2x
设g(x)=-(x²+5)/2x 则g’(x)=(5-x²)/2x²
令g’(x)=0得:x=√5或x=-√5(舍去)
∴当1≤x≤√5时,g’(x)≥0,当√5≤x≤3时,g’(x)≤0
∴g(x)在(1,√5)上递增,在(√5,3)上递减,
g(1)=-3 g(3)=-7/3,g(√5)=-√5
∴g(x)的最大值为g(√5)=-√5,最小值为g(1)=-3
∴当f'(x)≤0时,a≤g(x)≤g(1)=-3
当f’(x)≥0时,a≥g(x)≥g(√5)=-√5
∴a≤-3或a≥-√5