函数的基本性质函数y=根号下(x的平方+2x-3)的单调递减区间是(-无穷,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:40:10
函数的基本性质函数y=根号下(x的平方+2x-3)的单调递减区间是(-无穷,
xTrV~?"A̴3mn:BI3accgL16خ]c$˜= ݣH=Ӌ 3poWY/ByF.7Viǁژػ)y8w􃓖5Ž{u\$h豕h}w/O ?[]d2ĩ@ 4-^cJKVR_)Bwvh}Dl65 $b(TX eWbV=Pa{L^)`\%}[ .#~҃^GlGz"Dq|?ceo{Gj^CHOx_^q/z5'n6̼vw;}}6u/xHiKwa"gؓ) aӟL.ZG!o^Uf^<7 (Ɖw4a7&HBt *k&_/~=W舽F]%ˌE^v"zH6F]UO\8OdNi2Wtԫ|&_2KRvH #9̯P-]Džӊ;5[#zWGoڿB5~ic1hG?Qֿ8FJxnݧVM7 /3bWO =}&grZ.Iؐ*1Kq#*)S-QX2 3`x ]Mi[4wm>$:ȇ_xMcհG2hPؘ]<5>h:7rÿQ0ji6Y9&EC>Tm \H/^nPk *IRY c4؟Q'"ԅmwQ|!/䌁ypŋ?~O[p|3pҝoVVY `sBJq

函数的基本性质函数y=根号下(x的平方+2x-3)的单调递减区间是(-无穷,
函数的基本性质
函数y=根号下(x的平方+2x-3)的单调递减区间是(-无穷,

函数的基本性质函数y=根号下(x的平方+2x-3)的单调递减区间是(-无穷,
(1)先看函数的定义域.
x要满足
(x+3)(x-1)>=0
把整个实轴分成3段,(-无穷,-3],(-3,1),[1,+无穷).
在3段区间内任选3个数,带入上面的不等式检验.
比如,把-4,0,2分别带入上面不等式的左边,就可以发现-4 和2 满足不等式,而0不满足部等十.
接着考察一下区间的端点-3和1,最终确定函数的定义域为
(-无穷,-3] 和 [1,+无穷)的并集.
(2)对于函数y=f(x)>=0 而言,记sqrt[f(x)]为f(x)的平方根.则由于
sqrt[f(x1)] - sqrt[f(x2)] =
= [f(x1)-f(x2)]/{sqrt[f(x1)] + sqrt[f(x2)]}
因此,函数y=f(x)>=0与z=sqrt[f(x)]的单调区间是一致的.
这样,只要考察函数z=(x+3)(x-1)在(-无穷,-3] 和 [1,+无穷)上的单调性就可以了.
z=(x+3)(x-1)是开口向上的抛物线.
因此,在区间(-无穷,-3)上是单调递减的,在(1,+无穷)上是单调递增的.
所以,题目的说法是正确的.
也就是说,函数y=根号下(x的平方+2x-3)的单调递减区间是(-无穷,-3).

高中毕业很久了 只能尝试下 呵呵
Y^2=X^2+2X-3
Y^2=(X+3)(X-1)
因为Y>=0 则 (X+3)(X-1)>=0 则X属于[-无穷,-3]并上[1,+无穷]
图的话你就自己画了

先确定定义域
(x+3)(x-1)>=0
x>=1或x<=-3
求导
y'=(2x+2)/2根号下(x2+2x-3)
y'<=0时为单调减函数
分母不为0,所以X<-3
根号的式子肯定时正的,所以2x+2<0 得出x<-1
综合:x<-3且x<-1
所以减区间为(-无穷,-3)

google有一个计算器可以帮你作出图