二元二次方程3x^2-xy+3y^2=7x+7y的整数解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 04:33:01
二元二次方程3x^2-xy+3y^2=7x+7y的整数解
xTnP/p&| RF UBjVKQH Q!`#MVB>MJ+VHƞ9̝7JJ[p>U݈FN`= hz{iğ_w5ulݘ:: =6H:f ! CWɩP+>+/5k~"V$pxRԯ|<"Dy-pock`s}8axف[wxJJ-bvHI:"2:)I*eOO,;Oyy~:KD0twO#,?YqĹ#1ք=Z ªT59%>3$T'"jWՂ5@T (߽yl':-* 1H tLzBBN&.a4PaRyFOl lҩCM98))K;5eZXRa6K C] '֘Hae8=N"ljTdŌ цUkrK"/^eIf^٪YFFҷ C,,rV:ISYEwؒtHgT P)HYufLFP.SEV5{2b

二元二次方程3x^2-xy+3y^2=7x+7y的整数解
二元二次方程3x^2-xy+3y^2=7x+7y的整数解

二元二次方程3x^2-xy+3y^2=7x+7y的整数解
∵3x^2-xy+3y^2=7x+7y,∴3x^2+3y^2-6x-6y=xy+x+y,
∴xy+x+y=3(x^2+y^2-2x-2y).
∵x、y是整数,∴3(x^2+y^2-2x-2y)是3的倍数,∴可令xy+x+y=3t,其中t是整数.
显然有:x+y=3t-xy.······①
将①代入到原式中,得:3x^2-xy+3y^2=21t-7xy,∴3x^2+6xy+3y^2=21t,
∴x^2+2xy+y^2=7t,∴(x+y)^2=7t.
∵7是素数、t是整数,∴(x+y)是7的倍数.
令x+y=7k,其中k是整数,得:(7k)^2=7t,∴t=7k^2.
将x+y=7k、t=7k^2代入到①中,得:7k=21k^2-xy,∴xy=21k^2-7k.
∵x+y=7k、xy=21k^2-7k,
∴由韦达定理可知:x、y是下列关于z的方程z^2-7kz+21k^2-7k=0的根.
自然,z是整数,∴z^2-7kz+21k^2-7k=0的判别式不小于0,
∴(-7k)^2-4(21k^2-7k)≧0,∴7k^2-12k^2+4k≧0,∴5k^2-4k≦0,
∴k(k-4/5)≦0,∴0≦k≦4/5<1,∴k=0.
于是:x+y=0、xy=0,∴x=y=0.
∴原方程的整数解是:x=y=0.

3x^2-(y+7)x+3y^2-7y=0 so Δ=(y+7)^2-4*3*(3y^2-7y)>=0 由于x,y的整数解,所以 0<=y<=3 ,即y=0,1,2,3
x有整数解,所以设Δ=t^2 ,即 -35y^2+84y+49=t^2 ,把 y=0,1,2,3 带入可知,只有y=0时 Δ=t^2 才有整数解,所以y=0,
把y=0 带入原始方程得:3x^2=7x ,所以...

全部展开

3x^2-(y+7)x+3y^2-7y=0 so Δ=(y+7)^2-4*3*(3y^2-7y)>=0 由于x,y的整数解,所以 0<=y<=3 ,即y=0,1,2,3
x有整数解,所以设Δ=t^2 ,即 -35y^2+84y+49=t^2 ,把 y=0,1,2,3 带入可知,只有y=0时 Δ=t^2 才有整数解,所以y=0,
把y=0 带入原始方程得:3x^2=7x ,所以x=0或x=7/3,整数解为x=0
所以 x=0,y=0

收起