椭圆x^2/9+y^2/2=1的焦点F1,F2,点P在椭圆上,若PF1绝对值=2~则PF2绝对值= 角F1pF2大小为RT

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:54:08
椭圆x^2/9+y^2/2=1的焦点F1,F2,点P在椭圆上,若PF1绝对值=2~则PF2绝对值= 角F1pF2大小为RT
xJ1_œ.!SQ;{y¶w ."A/];H1&jߠ7_2ߏI(E%U@niu)/'{7v nfOJwz?.XߩQ8cY!Ml:

椭圆x^2/9+y^2/2=1的焦点F1,F2,点P在椭圆上,若PF1绝对值=2~则PF2绝对值= 角F1pF2大小为RT
椭圆x^2/9+y^2/2=1的焦点F1,F2,点P在椭圆上,若PF1绝对值=2~则PF2绝对值= 角F1pF2大小为
RT

椭圆x^2/9+y^2/2=1的焦点F1,F2,点P在椭圆上,若PF1绝对值=2~则PF2绝对值= 角F1pF2大小为RT
a²=9
a=3
由椭圆定义
|PF2|+|PF1|=2a=6
|PF2|=4
b²=2
c²=9-2=7
c=√7
F1F2=2c=2√7
由余弦定理
cosF1PF2=(PF1²+PF2²-F1F2)/(2PF1*PF2)=-1/2
所以角=2π/3

已知F1 F2为椭圆X^/25+Y^2/9=1的两个焦点,过F1的直线交椭圆于AB两点.若|F2A|+|F 已知椭圆x^2/9 +y^2/5 =1的焦点为F1、F2,在直线x+y-6=0上找一点M ,求以F1、F2 为焦点,通过点M且长轴最短的椭圆方程. 已知F1,F2为椭圆x^2+y^2/2=1的两个焦点,AB是过焦点F1的一条动弦求三角形ABF2面积的最大值 F1,F2是椭圆x^2/25+y^2/9=1的两焦点,AB是过F1的弦,|AB|=8,则|AF1|+|BF1|= 是高二数学文科选修的题.已知椭圆方程为x^2/16+y^2/9=1的左右焦点为F1,F2,过焦点F1的直线交椭圆于A,B两点,求三角形ABF2的周长. 已知椭圆方程为(x^2)/16+(y^2)/9=1的左、右焦点分别为F1、F2,过左焦点F1的直线交椭圆于A、B两点.求三角形ABF2的周长. 设点f1是椭圆x^2/2+y^2=1的左焦点,弦AB过椭圆的右焦点,求三角形F1AB面积的最大值 已知椭圆X^2/9+Y^2=1,过左焦点F1作倾斜角为30°的直线交椭圆于A,B两点,求左焦点F1到AB中点M的距离 设AB是过椭圆x^2/9+y^2/25=1中心的弦,F1是椭圆上的焦点,求△ABF1面积的最大值 设P是椭圆C:x^2/9+y^2/4=1上的点,F1,F2是椭圆的两个焦点,求角F1PF2的最大值 P是椭圆x^2/25+y^2/9=1上的动点,F1、F2是椭圆的两焦点,则|PF1||PF2|的最小值 已知椭圆X^2/25+Y^2/9=1上.F1.F2为椭圆的两焦点,若角F1PF2=60度,求这三角形的面积 已知点p是椭圆x^2/25+y^2/9=1上一点,F1,F2为椭圆的焦点,求|PF1|*|PF2|的最大值 已知点P在椭圆X^2/25+y^2/9=1上一点,F1,F2为椭圆的焦点,求|PF1|*|PF2|的最大值 设P是椭圆x^2/9+y^2/4=1上一 点,F1,F2是椭圆的两焦点,则cos∠F1PF2的最小值 设p施椭圆x^2/9+y^2/4=1上一动点,F1,F2是椭圆的两个焦点,则cos∠F1PF2的最小 M是椭圆x^2/9+y^2/4=1上任意一点,F1,F2是椭圆的左、右焦点,则|MF1| *|MF2|的最大值是? 设为F1,F2椭圆 y^2/25+x^2/9=1的焦点,p为椭圆上一点.则p F1F2周长是多少