已知x²+(m-2)x+(m²+3m+5)=0的两实根的平方和的最大值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 17:36:52
已知x²+(m-2)x+(m²+3m+5)=0的两实根的平方和的最大值是
xRJ@~ imI>P+E/{AJJ+mS+՘)ݤ Nv$3~3{ zwD};i3Ogcnl6yvQV3dU׿~4Pq> 7ܟ][Df0끹=s'r!}5k0.xEC:^+(gA鐝Y5H>Pj.z=yy-NX"{,W1BUa[4FaiJpS'(T1):xJ{b k9uILFQ {2i4MŜTGx $cQvu9] >OdSĔu` 3>ˈl5 th 0zbB*.0ֶ Yu0ܵyaH[etyqqI 

已知x²+(m-2)x+(m²+3m+5)=0的两实根的平方和的最大值是
已知x²+(m-2)x+(m²+3m+5)=0的两实根的平方和的最大值是

已知x²+(m-2)x+(m²+3m+5)=0的两实根的平方和的最大值是
解;
方程有实根,判别式≥0
(m-2)²-4(m²+3m+5)≥0
3m²+16m+16≤0
(m+4)(3m+4)≤0
-4≤m≤-4/3
设两根分别为x1,x2.由韦达定理得
x1+x2=2-m
x1x2=m²+3m+5
x1²+x2²=(x1+x2)²-2x1x2
=(2-m)²-2(m²+3m+5)
=-m²-10m-6
=-(m+5)² +19
又-4≤m≤-4/3
当m=-4时,x1²+x2²有最大值(x1²+x2²)max=18.

方程有解所以(m-2)^2-4(m²+3m+5)>=0 得到(m+4)(3m+4)>=0
所以m<=-4或m>=-4/3
x1*x1+x2*x2=(x1+x2)^2-2x1x2=(2-m)^2-2(m²+3m+5)=-m*m-10m-6
因为m<=-4或m>=-4/3 当m=-4时,实根的平方和的最大,最大值是18