已知抛物线C的方程为 ,直线l:轴的交点在抛物线C准线的右侧.(Ⅰ)求证:直线l与抛物线C恒有两个不同交点;(Ⅱ)已知定点 ,若直线l与抛物线C的交点为Q,R,满足 ,是否存在实数 ,使得原点 到直线l的

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:40:43
已知抛物线C的方程为 ,直线l:轴的交点在抛物线C准线的右侧.(Ⅰ)求证:直线l与抛物线C恒有两个不同交点;(Ⅱ)已知定点 ,若直线l与抛物线C的交点为Q,R,满足 ,是否存在实数 ,使得原点 到直线l的
xTKOQ+28BHZ01]U&i'w/<t@!D[0 θ/{ygM7%! wSfuT$ XfuFvV9 S-KM,X+ )qh~ }<9]9] NɄQ@)26q2A{-JNWLhg C*q^\I3o_] "IWq@WNMMpbna>BA?¾Z&eR8Ff׊SYXmٱUׁ4b^aWjVr>\gmzRhڥ $Z y@Wuxgug iyW„kN9i_^>̽^Kz0 0 8Pbv7 ~ >OXשf(5p1ZG9Z|;NMn[Q[1>^jE <f0pʐ6'|E^GQH8oA㍀oVݱ« \Y"b0 %TQC#k far8Q0$[I7fcrW^ܒG.!a\c:a$Ʌ"2Γ݌=]"z2-8ٱ&ӈgQ#[2UnLܪ1)n

已知抛物线C的方程为 ,直线l:轴的交点在抛物线C准线的右侧.(Ⅰ)求证:直线l与抛物线C恒有两个不同交点;(Ⅱ)已知定点 ,若直线l与抛物线C的交点为Q,R,满足 ,是否存在实数 ,使得原点 到直线l的
已知抛物线C的方程为 ,直线l:轴的交点在抛物线C准线的右侧.
(Ⅰ)求证:直线l与抛物线C恒有两个不同交点;
(Ⅱ)已知定点 ,若直线l与抛物线C的交点为Q,R,满足 ,是否存在实数 ,使得原点 到直线l的距离不大于 ,若存在,求出正实数 的的取值范围;若不存在,请说明理由.
分有点少.主要是我实在没分了.
更正:
已知抛物线C的方程为 :y^2=px (p>0) 直线l:x+y=m与X轴的交点在抛物线C准线的右侧.
(I I):已知定点A(1,0)若直线l与抛物线C的交点为Q,R,满足向量AQ点乘向量AR=0,是否存在实数m,使得原点o到直线l的距离不大于四分之根号二,若存在,求出正实数p的取值范围;若不存在,请说明理由

已知抛物线C的方程为 ,直线l:轴的交点在抛物线C准线的右侧.(Ⅰ)求证:直线l与抛物线C恒有两个不同交点;(Ⅱ)已知定点 ,若直线l与抛物线C的交点为Q,R,满足 ,是否存在实数 ,使得原点 到直线l的
(1)联立y^2=px 和:x+y=m 得到x^2-(2m+p)x+m^2=0
求 △=(2m+p)^2-4m^2=p(p+4m)
因为直线l:轴的交点在抛物线C准线的右侧,我们假设l临界时与准线交于x轴上一点,所以纵截距m的最小值应该取在l与准线相交时的纵截距,准线x=-p/4 即让l过(-4/p,0)这个点 在此求得m=-p/4
把求得的m带入△中 △=p(p-p)≥0 这是个临界的假设 m假设的最小值为-p/4 所以m实际应该大于-p/4 所以△>0
所以它与C恒有两个交点
(2)没看懂是什么意思,你可以发图来

使得原点o到直线l的距离不大于四分之根号二,可求出m∈[-1/2,1/2];------条件1
联立两方程可求出Q、R两点坐标
向量AQ点乘向量AR=0推出AQ斜率*AR斜率=0,由此推出p=(-1 + m)^2/(1 + m)----条件2
联立条件1与条件2可求出p的取值范围【1/6,9/2】

已知抛物线C的方程为 ,直线l:轴的交点在抛物线C准线的右侧.(Ⅰ)求证:直线l与抛物线C恒有两个不同交点;(Ⅱ)已知定点 ,若直线l与抛物线C的交点为Q,R,满足 ,是否存在实数 ,使得原点 到直线l的 已知抛物线C:y^2=4x,设直线l与抛物线两交点为A、B,且线段AB中点为M(2,1),求直线ll的方程 已知抛物线C:y^2=2px的焦点为F,点k(-1,0)为直线l与抛物线c准线的交点,直线l与抛物线C相交于AB两点,点A关于x轴的对称点为D,(1)求抛物线的方程 (2)证明点F在直线BD上 第一问是不是 y^2=4x ? 已知抛物线C:y2=2px,点P(-1,0)是其准线与x轴的交点,过P的直线l与抛物线C交于A,B.(1)当线段AB的中点在直线x=7上时,求直线L的方程;(2)设F为抛物线C的焦点,当A为线段PB中点时,求三角形FAB的面 有关抛物线、直线、圆已知抛物线C:y^2=4x,求经过A(-1,-6)的直线l的方程,使直线l与C有两个交点P、Q,且以PQ为直径的圆过C的顶点. 已知抛物线C:y^2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=5/4|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M 已知斜率为2的直线L截抛物线C:y^2=-4x所得弦AB的长为根号15,求直线L的方程 已知抛物线:y^2=4x,设直线与抛物线两交点为A,B,且直线AB中点M(2,1),求直线l的方程.如题. 已知抛物线C:y=4x^2,直线l:x-y-2=0,则抛物线C上到直线l距离最小的点坐标为?(请注意抛物线方程,别看错了 已知抛物线L:y=ax2+bx+c(其中a,b,c都不等于0),它的顶点P的坐标是(-b/2a,(4ac-b2)/4a),与y轴的交点交点是M(0,才).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴 已知抛物线L:y=ax2+bx+c(其中a,b,c都不等于0),它的顶点P的坐标是(-b/2a,(4ac-b2)/4a),与y轴的交点交点是M(0,才).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴 求直线与抛物线 直线方程已知抛物线C:y2=4x焦点为F,直线L经过点F且与抛物线C相交于A,B两点(1)若线段AB的中点在直线y=2上,求直线L的方程(2)若线段▏AB▏=20,求直线L方程 过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线准线的交点为B,点A在抛物线准线上的射影为C,若AF=FB,BA*BC=48,则抛物线的方程为 已知抛物线C的方程为y²-2px-2ysin²θ+sinθ的四次方+2pcosθ=0⑴求抛物线C的焦点F的坐标⑵过F作倾斜角为45°的直线l与抛物线C相交于AB两点,当θ变化时,求弦AB的中垂线与x轴的交点的横 已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,m)到焦点F的距离为3,斜率为2的直线l与抛物线C交于A,B两点,设满足AB模=3√5求抛物线和直线l方程 已知抛物线C的焦点在y轴上,且抛物线上的点P(X0,3)到焦点F的距离为4,斜率为2的直线y与抛物线C交于A,B两点1 求抛物线C的标准方程2 若线段|AB|=12倍的根号5,求直线l的方程 已知F是抛物线y2=4x的焦点,Q是抛物线的准线与x轴的交点,直线l经过点Q.若直线l与抛物线恰有一个交点,求l 已知抛物线y=1/2x^2-2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B, 与抛物线对称轴交于点0’,过点B和P的直线L交Y轴于点C,连接O'C,将三角形ACO'沿O'C翻折后,点A