用归纳法证明不等式:(n^2+n)^0.5 < n+1的正解过程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:59:28
用归纳法证明不等式:(n^2+n)^0.5 < n+1的正解过程.
xTN@!mB@H$ Q)!w *P/{/bЄ3sfΙLQ"JOjDNY#EyOW*آ@C y*fh-ͅ_",$/00)N[8aC,)RKy?+Ԑ.ܟtsNT.ؤ|Iv(;ضș xᅠ |2.Yv:u_|Uǽ FԓqCcWjݛWc]ulSIG4 2S*[ky{ɹߓw*?Ha~-BCغjSLI6^ZY!'-Ҟ1agtz e^

用归纳法证明不等式:(n^2+n)^0.5 < n+1的正解过程.
用归纳法证明不等式:(n^2+n)^0.5 < n+1的正解过程.

用归纳法证明不等式:(n^2+n)^0.5 < n+1的正解过程.
n=1显然
假设n=k成立
√k^2+kn=k+1
√(k+1)(k+2)=√k^2+3k+2于是得证
忽然发现根本不需要归纳法..n=k成立不需要假设,两边平方得0

证明:当n=1时,不等式左边=2^0.5
不等式右边=2
左边<右边
假设当n=K,K∈N时不等式成立,则
(K^2+K)^0.5 < K+1
那么当n=K+1时,
不等式左边=[(K+1)^2+(K+1)]^0.5...

全部展开

证明:当n=1时,不等式左边=2^0.5
不等式右边=2
左边<右边
假设当n=K,K∈N时不等式成立,则
(K^2+K)^0.5 < K+1
那么当n=K+1时,
不等式左边=[(K+1)^2+(K+1)]^0.5<[(K+1)^2+2(K+1)+1]^0.5=[(K+1+1)^2]^0.5=K+2=右边
不等式成立
所以(n^2+n)^0.5 < n+1

收起

我的解法一样
证明:当n=1时,不等式左边=2^0.5
不等式右边=2
左边<右边
假设当n=K,K∈N时不等式成立,则
(K^2+K)^0.5 < K+1
那么当n=K+1时,
不等式左边=[(K+1)^2...

全部展开

我的解法一样
证明:当n=1时,不等式左边=2^0.5
不等式右边=2
左边<右边
假设当n=K,K∈N时不等式成立,则
(K^2+K)^0.5 < K+1
那么当n=K+1时,
不等式左边=[(K+1)^2+(K+1)]^0.5<[(K+1)^2+2(K+1)+1]^0.5=[(K+1+1)^2]^0.5=K+2=右边
不等式成立
所以(n^2+n)^0.5 < n+1

收起