(n+1)(n+2)分之1 +(n+2)(n+3)分之1 +(n+3)(n+4)分之1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 20:11:38
x)6FO;ڞ6T~
M`6IE/X#6GBH#m0 f` B <]CM}q`k!2"yvsI]0
'|c(S$M&N5>tO?b0 Q
(n+1)(n+2)分之1 +(n+2)(n+3)分之1 +(n+3)(n+4)分之1
(n+1)(n+2)分之1 +(n+2)(n+3)分之1 +(n+3)(n+4)分之1
(n+1)(n+2)分之1 +(n+2)(n+3)分之1 +(n+3)(n+4)分之1
(n+1)(n+2)分之1 +(n+2)(n+3)分之1 +(n+3)(n+4)分之1
=1/(n+1)(n+2)+1/(n+2)(n+3)+1/(n+3)(n+4)
=1/n+1-1/n+2+1/n+2-1/n+3+1/n+3-1/n+4
=1/n+1-1/n+4
=(n+4-n-1)/(n+4)(n+1)
=3/(n+4)(n+1)
(n+1)(n+2)分之1 +(n+2)(n+3)分之1 +(n+3)(n+4)分之1
=1/(n+1)-1/(n+2)+1/(n+2)-1/(n+3)+1/(n+3)-1/(n+4)
=1/(n+1)-1/(n+4)
=3/(n+1)(n+4)
原式=1/(n+1)-1/(n+2)+1/(n+2)-1/(n+3)+1/(n+3)-1/(n+4)=1/(n+1)-1/(n+4)
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
化简n分之n-1+n分之n-2+n分之n-3+.+n分之1
2^n/n*(n+1)
证明不等式:(1/n)^n+(2/n)^n+(3/n)^n+.+(n/n)^n
(n+1)(n+2)分之1 +(n+2)(n+3)分之1 +(n+3)(n+4)分之1
(n)(n+1)分之1+(n+1)(n+2)分之1……(n+99)(n+100)分之1 化简
在n趋向无穷时(n+1分之一+n+2分之2+.+n+n分之n)的极限
设n为自然数,求证n+1分之1+n+2分之1+n+3分之1+...+3n分之1大于4n+1分之4n
n分之1+n分之2+n分之3+……n分之n-1=
(n+2)!/(n+1)!
n(n+2)分之1 n(n+k)分之1 等于多少
填空:对于任意的正整数,n,n(n+2)分之1=多少×(n分之1-n+2分之1)
n(n+2)分之+(n+2)(n+4)分之1+(n+4)(n+6)分之1+(n+6)(n+8)分之1+···(n+2006)(n+教教我!
一般规律:-n+1分之n( )-n+2分之n+1(填>或<)(n为正整数).
(-2分之1m+n)(-2分之1m-n)
根据式子n(n+1)分之1=n(n+1)分之(n+1)-n=n分之1-n+1分之1计算1x2分之1+2x3分之1+3x4分之1+...+2011x2012分之1
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简
[3n(n+1)+n(n+1)(2n+1)]/6+n(n+2)化简