接矩阵方程:设A=第一行4 0 0第二行1 4 0 第三行1 1 4,求矩阵B,使得AB-2A=3B.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:47:58
接矩阵方程:设A=第一行4 0 0第二行1 4 0 第三行1 1 4,求矩阵B,使得AB-2A=3B.
xSn@YMxTUdTd iJ *ixGhPRHUg<8ԪJ,l3qN<{^zOouawq2S|,,Ѣa՞*ajҡU0Wv:Pb&K-C={d&6Ɩs='#N3%pj:"kH2mϝ g#j 7 |r!*MLt<6=H.j1DϮ7{W _q@_]2lc:1.y'O+_, X7?w6T0w^q\I~φQ%`GVrL7:?Ksg%iQkac}\ bsS;jK i-죰2GS.G/ノ|Ne{>9rsik]..ejg=bs;0D徚#M}uG:wH5)$AC'©0 0i4# rԊ |NL#

接矩阵方程:设A=第一行4 0 0第二行1 4 0 第三行1 1 4,求矩阵B,使得AB-2A=3B.
接矩阵方程:设A=第一行4 0 0第二行1 4 0 第三行1 1 4,求矩阵B,使得AB-2A=3B.

接矩阵方程:设A=第一行4 0 0第二行1 4 0 第三行1 1 4,求矩阵B,使得AB-2A=3B.
AB-2A=3B
AB-3B = 2A
(A-3I)B=2A
B= 2(A+3I)^-1 A
A-3I = 1 0 0
1 1 0
1 1 1
这是可逆矩阵,所以上述的结果是有意义的.即B有唯一解
A-3I 的逆 可以算出来是 1 0 0
-1 1 0
0 -1 1
所以 答案就是 上面这个矩阵 乘以 A 再乘个2
8 0 0
-6 8 0
-2 -6 8
结果是我口算的,不保证没走神算错.但是过程就是这样,其实解这种AB-2A=3B跟解小学的
ax-2a=3x 方法是一模一样的,只是两边同时“除以”某个矩阵的时候,要讨论矩阵是否可逆,除以一个矩阵就当做是乘上它的逆即可,另外还要注意左乘右乘有区别.

接矩阵方程:设A=第一行4 0 0第二行1 4 0 第三行1 1 4,求矩阵B,使得AB-2A=3B. 设矩阵A第一行-13 -6 -3第二行-4-2-1第三行2 1 1设矩阵B第一行1第二行0第三行-1求A-1. 设矩阵A=第一行1,2,2 第二行-1,-1,0 第三行1,3,5 B=第一行1,2 第二行-1,1 第三行 0,4 AX=B,求X 1、设矩阵第一行 1 0 -1 ,第二行1 3 0 ,第三行0 2 1 ,X为三阶矩阵,且满足矩阵方程AX+I=A^2+X,求矩阵X2、带负号的怎样化成矩阵的标准形式?比如第一行 1 -1 0 第二行 0 1 -1 第三行 0 0 13、第一行第一个 设A=第一行[3 0 -1]第二行[1 4 1]第三行[1 0 3],求矩阵B,使得AB-2A=2B. 设矩阵P=-1 -4(第一行)1 1(第二行).D=-1 0(第一行)0 2(第二行).A由P^-1AP=D确定,试求A^5 设矩阵A=第一行 1,-1,0 第二行0,1,1 第三行0,0,1 ,求可逆矩阵 解矩阵方程:设A=第一行300,第二行130,第三行113,求矩阵B,使得AB-2A=2B 设矩阵A=第一行1,0,1第二行 0,2,0第三行 0,0,1,求A^k(k=2,3,...) 设矩阵A=第一行3 0 8 第二行3 -1 6 第三行-2 0 5 求A的负1次方 设矩阵A=第一行3,2,-2第二行0,-1,0第三行4,2,-3 求可逆方阵P,使P^-1AP为对角矩阵.老算不对 关于矩阵可相似对角化的题设矩阵A=第一行:2 0 1第二行:3 1 x第三行:4 0 5 可相似对角化,求x 设矩阵A,第一行(1 0 2)第二行(0 2 0)第三行(2 0 1)问矩阵A能否对角化? 求矩阵a=第一行1 -1 0 第二行01-1第三行001的逆矩阵 解矩阵方程第一行1 2 3第二行 2 3 1X=第一行1 0第二行 0 1 设矩阵A=(11/01)则A的平方+2A-2E等于多少?注1 1在第一行,0 1在第二行,急 设矩阵A=第一行 1,0,0 第二行0,2,1 第三行0,1,2 ,求可逆矩阵P,使P-1AP为对角矩阵. 设矩阵A=第一行 1,0,0 第二行0,2,1 第三行0,1,2 ,求可逆矩阵P,使P-1AP为对角矩阵.