f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)cos(x+π/8)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 08:45:20
f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)cos(x+π/8)
xQMKA+! SwfϰKŖٙVnH-ZRQzPT nL>j{ȡ}ff8߭"dq-w9l2z:1Ҧ_Q _0dZ]'`$a:,8.;_&xUa4j!x'q3u:iitL h74(4A9da<Qھ]ue2ݤ-n60+4c*-5̈nhSYE0Uo "ܐA91@ ?3o

f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)cos(x+π/8)
f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)cos(x+π/8)

f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)cos(x+π/8)
f(x)=1-2sin^2(x+π/8)+2sin(x+π/8)cos(x+π/8)
=cos(2x+π/4)+sin(2x+π/4)
=√2*[√2/2*cos(2x+π/4)+√2/2*sin(2x+π/4)]
=√2*[sinπ/4*cos(2x+π/4)+cosπ/4*sin(2x+π/4)]
=√2*sin(π/4+2x+π/4)
=√2*sin(π/2+2x)
=√2*cos2x
所以f(x)最大值为:√2,
单调增区间:2kπ-π<2x<2kπ 或 kπ-π/2

结果见我插入的图片