已知抛物线y=ax^2+bx-3与x轴交于A,B两点,与Y轴交于C点,经过A,B,C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,圆M的半径为根号5.设圆M与Y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式.(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 15:36:07
已知抛物线y=ax^2+bx-3与x轴交于A,B两点,与Y轴交于C点,经过A,B,C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,圆M的半径为根号5.设圆M与Y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式.(
xUMS"G+HS0pܒk.[2upÏU@kuQLXTvW ?G_0n*&U~Kt;@b8jNAsk7[{<6*,t<ݼ(F<.T|""2>DtGr! Sf衰bW%|BEn+溿W2${sq1Q#^Li2`5 58>$ژL<=`㾢_tLEȴ> d f֘T<N_Vf#vr!e~$8%JbRH ~(p<~1WH;:EBEc{")Q ;C)[ym?v?L<-)2UD%%&.|OMh;#2LKi?:?7qZvsHE4!B4"-fw֪DK{Ern6iw~ ١r /w7]Z(-si"Pm"A`iA]yG Xϼ/Ŭ$$klSX~1Ì9V|'O͌ɩa'Hu{kLt˩^NMӆYu=2 [T?R*,ν~bk

已知抛物线y=ax^2+bx-3与x轴交于A,B两点,与Y轴交于C点,经过A,B,C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,圆M的半径为根号5.设圆M与Y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式.(
已知抛物线y=ax^2+bx-3与x轴交于A,B两点,与Y轴交于C点,经过A,B,C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,圆M的半径为根号5.设圆M与Y轴交于D,抛物线的顶点为E.
(1)求m的值及抛物线的解析式.
(2)设角DBC=阿尔法,角CBE=北他,求sin(阿尔法-北他)的值.
(3)探究坐标轴上是否存在点P,使得以P,A,C为顶点的三角形与三角形BCE相似?若存在,请指出点P的位置并直接写出P的坐标,若不存在,请说明理由.
1)抛物线y=ax^2+bx-3得c(0,-3)
圆心M(1,m),圆M的半径为根号5.得(1-0)^2+(m+3)^2=5得m=-1或-5
如图,所以 m=-1 M(1,-1)
圆方程:(x-1)^2+(y+1)^2=5令y=0得x=-1或x=3,即A(-1,0),B(3,0)
令x=0得y=-3或y=1,即C(0,-3)D(0,1)
带入抛物线y=ax^2+bx-3联立得,a=1,b=-2
所以,抛物线y=x^2-2x-3
2)角DBC=α,角CBE=β
C(0,-3),B(3,0),D(0,1)
因为E为顶点,E(1,-4)
BC=3√2,CE=√2,BE=2√5
BO=3,OD=1,BD=√10
所以BC:BO=CE:OD=BE:BD
所以△CBE∽△OBD
角CBE=角OBD=β
sin(α-β)=sin角CBO=OC:BC=3:3√2=√2/2
3)坐标轴上不存在点P满足△PAC∽△BCE
若存在△PAC∽△BCE,设P(x,y)
PA:BC=AC:CE=PC:BE
PA:3√2=√10:√2=PC:2√5=√5
PA=3√10;PC=10
(x+1)^2+y^2=(3√10)^2=90
令x=0得y=正负√89;令y=0得x=正负3√10-1
x^2+(y+3)^2=10^2=100
令x=0得y=7,y=-13;令y=0得x=正负3√91
所以坐标轴上不存在点P
求完整的讲解.

已知抛物线y=ax^2+bx-3与x轴交于A,B两点,与Y轴交于C点,经过A,B,C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,圆M的半径为根号5.设圆M与Y轴交于D,抛物线的顶点为E.(1)求m的值及抛物线的解析式.(
通过第一小题求解知,除P点变动外,其余各点为定点.第三题的任务是能否在坐标轴上找到点P,使两三角形相似.假定它们相似,根据相似性质,得到点P满足的方程,在方程中分别令x、y等于零,得到的就是P点在y轴、在x轴的纵、横坐标.而从两个方程中算出的值不一样,因此得矛盾,说明点P不存在.

111

11

(3)坐标轴上不存在点P满足△PAC∽△CEB ,点P的坐标为(0,0)

shtrehehtehte

已知抛物线y等于ax方加bx加c与x轴交于A(2,0),(-3,0)两点,那么方程ax方 bx 已知抛物线y等于ax方加bx加c与x轴交于A(2,0),(-3,0)两点,那么方程ax方 bx 抛物线y=ax的平方+bx+c交x轴于A,B两点,交y轴于C点,对称轴为直线x=1,已知A(-1,0),C抛物线y=ax^2+bx+c交x轴于A、B两点,与y轴交于点C,已知抛物线的对称轴为x=1,B(3,0) 在抛物线的对称轴是否存抛物线y=ax^2+b 已知抛物线y=ax²+bx+c与y轴交于点(0,8),且与直线y=x-2交于两点,A(2,n)B(m,3)求抛物线的解析 (初三数学题)已知抛物线y=ax平方+bx+c的对称轴是直线x=3,抛物线与x轴交于A、B两点,与y轴交于C点,OC=2已知抛物线y=ax平方+bx+c的对称轴是直线x=3,抛物线与x轴交于A、B两点,与y轴交于C点,OC=2,S三 已知抛物线y=ax的平方+bx+c与x轴交于点A(-1,0),B(3,0),则这个抛物线的对称轴 已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1) 若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m已知抛物线y=x平方-2x+m与x轴交于点A(x1,0)B(x2,0) (X2>X1)若抛物线y=ax平方+bx+m与抛物线y=x平方-2x+m关 已知抛物线y=ax^2+bx+c的顶点坐标为(4,-1),与y轴交于点(0,3),求这条抛物线对应的函数表达式. 如图,已知抛物线y=ax平方+bx+3(a不等于0)与x轴交于A(1,0)和点B(-3,0),与y轴如图,已知抛物线y=ax平方+bx+3(a不等于0)与x轴交于点A(1,0)B(-3,0)与y轴交于点C 1、求此抛物线的解析式2、设抛物线的对 已知抛物线y=ax^2+bx+c与x轴交于a(2,0),b(-3,0)两点,那么方程ax^2+bx+c=0的根为______. 已知抛物线y=ax平方+bx+c与X轴交于A(2,0),B(-3,0)两点,那么方程ax平方+bx+c=0的根为 已知抛物线y=ax²+bx+c与y轴交与C,与X轴交与点A(x1,0).B(x2,0)(x1 已知抛物线y=ax^2+bx+c(a≠0)的对称轴为x=3,与x轴交于A,B两点,与y轴交于C点,OC=2,三角形面积为4, 已知抛物线y ax的平方加bx加c的对称轴x=2,且与x轴交于AB两点,与Y轴交于C,期中A(1,0),C(0,-3) 4 分钟前 已知抛物线y=ax^2+bx+c的顶点M坐标是(2,-1),其开口方向形状与抛物线y=x^2完全相同,抛物线与x轴交于A,B 抛物线y=ax²+bx+c与x轴交与(-1,0)(3,0),其形状与y=-2x²相同, 已知抛物线y=ax方+bx+c与x轴交于A(-3,0),对称轴为x=-1,顶点M到X轴距离为2,求抛物线解析式在线等啊.亲速度. 已知抛物线y=ax^2+bx-3与x轴交于A,B两点,与Y轴交于C点,经过A,B,C三点的圆的圆心M(1,m)恰好