数列an各项都是正数,前n项为sn,且an和sn满足4sn=(an+1)^2 (n为正整数),求证an是等差数列,并求an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 22:24:24
xR[N@݊֩H?ɸb7֠_"Acg~oUW=ܞ-n{x]wqkU{@{5Y .n'k
l
1',FLRbyLT"ԧr70ټgCH͝OUP4-A%ZcHBSl[ybs~#bIc.iV>(Q
~M*0ȍbDEv=SN#_
]^jG&xZf,h ohQ$7
h$%Ԙn@2-R >F#hw$A9,7<犓?JqDctu*Y[[Z_ZX^Y\H-C
数列an各项都是正数,前n项为sn,且an和sn满足4sn=(an+1)^2 (n为正整数),求证an是等差数列,并求an
数列an各项都是正数,前n项为sn,且an和sn满足4sn=(an+1)^2 (n为正整数),求证an是等差数列,并求an
数列an各项都是正数,前n项为sn,且an和sn满足4sn=(an+1)^2 (n为正整数),求证an是等差数列,并求an
a1=s1=(a1+1)^2/4得a1=1
n大于1时,an=sn-s(n-1)=(an+1)^2/4-(a(n-1)+1)^2/4
(an-1)^2=(a(n-1)+1)^2
若an-1=a(n-1)+1得an-a(n-1)=2
若-an+1=a(n-1)+1得an+a(n-1)=0(舍)
所以an是等差数列
an=1+2(n-1)=2n-1
构造4Sn-1=(an-1+1)^2;然后用4sn=(an+1)^2 -4Sn-1=(an-1+1)^2;整理得到。4an=an^2-(an-1)^2+2an-2(an-1).再整理得到,an^2-(an-1)^2=2(an-an-1)得到,an-(an-1)=2.即为等差,首项a1为1。公差为2。由于电脑打字不方便,有问题找我,QQ670637853